• Title/Summary/Keyword: Ro 31-8220

Search Result 9, Processing Time 0.032 seconds

Effects of Phorbol Estr, Gö-6976, Ro-31-8220 and Röttlerin on Basal Mucin Release from Airway Goblet Cells

  • Heo, Ho-Jin;Lee, Hyun-Jae;Seok, Jeong-Ho;Seo, Un-Kyo;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.251-255
    • /
    • 2005
  • In the present study, we tried to investigate whether protein kinase C (PKC) activator, phorbol 12-Myristate 13-Acetate (PMA), and PKC inhibitors, $G\"{o}-6976$, Ro-31-8220 and rottlerin significantly affect basal mucin relesed from cultured airway goblet cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with $^3H$-glucosamine for 24 hr and chased for 30 min in the presence of each agent to assess the effects on $^3H$-mucin release. The results were as follows: (1) PMA increased mucin release from cultured HTSE cells, during 30 min of treatment period; (2) However, $G\"{o}-6976$, Ro-31-8220 and rottlerin did not significantly affect mucin release, during 30 min of treatment period. This finding suggests, at least in part, that PKC might playa minor role in the signaling pathways involved in basal - physiological or constitutive - mucin release from airway goblet cells, although further studies are needed.

PKC inhibitors RO 31-8220 and Gö 6983 enhance epinephrine-induced platelet aggregation in catecholamine hypo-responsive platelets by enhancing Akt phosphorylation

  • Kim, Sun-Young;Kim, Se-Woon;Kim, Jeong-Mi;Jho, Eek-Hoon;Park, Seon-Yang;Oh, Do-Yeun;Yun-Choi, Hye-Sook
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • Impaired responsiveness of platelets to epinephrine (epi) and other catecholamines (CA) has been reported in approximately 20% of the healthy Korean and Japanese populations. In the present study, platelet aggregation induced by epi was potentiated by RO 31-8220 (RO) or G$\ddot{o}$ 6983 (G$\ddot{o}$). Phosphorylated Akt (p-Akt) was very low in epi-stimulated PRP from CA-hypo- responders (CA-HY), whereas it was detected in those from CA-good responders (CA-GR). RO and G$\ddot{o}$ increased p-Akt, one of the major downstream effectors of phosphoinositol-3 kinase (PI3K), in epi-stimulated PRP from both groups. Wortmannin, a PI3K inhibitor, attenuated the RO or G$\ddot{o}$-induced potentiation of p-Akt in epi-stimulated PRP, suggesting positive effects for RO and G$\ddot{o}$ on PI3K. $TXA_2$ formation was increased by the addition of either RO or G$\ddot{o}$ in epi-stimulated platelets. The present data also suggest that impaired Akt phosphorylation may be responsible for epinephrine hypo-responsiveness of platelets.

Effects of ATP on Regulatory Volume Decrease in Mouse Cholangiocytes (ATP가 마우스 담관세포의 세포크기 조절에 미치는 영향)

  • Park, Jae Seung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.48 no.2
    • /
    • pp.153-157
    • /
    • 2016
  • Although the adenosine triphosphate (ATP) efflux pathway is thought to play a major regulatory role in RVD in some cells, including cholangiocarcinoma cells, the role of ATP in regulatory volume decrease (RVD) of normal cholangiocytes is not well defined. Thus, this study was conducted to investigate the role of extra cellular ATP and ATP pathways of BDCCs isolated from normal mice. Changes in cell volume of BDCCs were indirectly assessed by measurement of the cross-sectional area (CSA) by quantitative videomicroscopy. The relative CSA of BDCCs from normal mice increased with hypotonic maneuver to $1.20{\pm}0.02$ (n=20) within 10 min, but decreased to $1.06{\pm}0.03$ at 40 min. Administration of ATP, ATP hydrolase apyrase or the P2 receptor blocker suramin during RVD had no significant effects compared with untreated controls. In addition, treatment with the PKC inhibitors, Bisindolamide I and Ro 31-8220, during RVD had no significant effects when compared with untreated controls. These results indicate that unlike the results from cholangiocarcinoma cells, ATP plays no significant role in the RVD of normal mouse cholangiocytes.

Direct effect of protein kinase C inhibitors on cardiovascular ion channels

  • Son, Youn-Kyoung;Hong, Da-Hye;Kim, Dae-Joong;Firth, Amy L.;Park, Won-Sun
    • BMB Reports
    • /
    • v.44 no.9
    • /
    • pp.559-565
    • /
    • 2011
  • Protein kinase C (PKC) is a central enzyme that modulates numerous biological functions. For this reason, specific PKC inhibitors/activators are required to study PKC-related signaling mechanisms. To date, although many PKC inhibitors have been developed, they are limited by poor selectivity and nonspecificity. In this review, we focus on the nonspecific actions of PKC inhibitors on cardiovascular ion channels in addition to their PKC-inhibiting functions. The aim of this paper is to urge caution when using PKC inhibitors to block PKC function. This information may help to better understand PKC-related physiological/biochemical studies.

Calcium Sensitization Induced by Sodium Fluoride in Permeabilized Rat Mesenteric Arteries

  • Yang, En-Yue;Cho, Joon-Yong;Sohn, Uy-Dong;Kim, In-Kyeom
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.51-57
    • /
    • 2010
  • It was hypothesized that NaF induces calcium sensitization in $Ca^{2+}$-controlled solution in permeabilized rat mesenteric arteries. Rat mesenteric arteries were permeabilized with $\beta$-escin and subjected to tension measurement. NaF potentiated the concentration-response curves to $Ca^{2+}$ (decreased $EC_{50}$ and increased $E_{max}$). Cumulative addition of NaF (4.0, 8.0 and 16 mM) also increased vascular tension in $Ca^{2+}$-controlled solution at pCa 7.0 or pCa 6.5, but not at pCa 8.0. NaF-induced vasocontraction and $GTP{\gamma}S$-induced vasocontraction were not additive. NaF-induced vasocontraction at pCa 7.0 was inhibited by pretreatment with Rho kinase inhibitors H1152 or Y27632 but not with a MLCK inhibitor ML-7 or a PKC inhibitor Ro31-8220. NaF induces calcium sensitization in a $Ca^{2+}$ dependent manner in $\beta$-escin-permeabilized rat mesenteric arteries. These results suggest that NaF is an activator of the Rho kinase signaling pathway during vascular contraction.

Involvement of Phospholipase D in Norepinephrine Uptake in PC12 Cells

  • Rhee, Jong-Joo;Oh, Sae-Ock;Kim, Young-Rae;Park, Jong-Il;Park, Seung-Kiel
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.287-293
    • /
    • 2009
  • Phospholipase D (PLD) is an enzyme hydrolyzing phosphatidylcholine to phosphatidic acid (PA) and choline. We investigated the involvement of PLD1 in the uptake of norepinephrine (NE) in PC12 cells, pheochromocytoma cells. NE uptake was specific in PC12 cells because nomifensine, a specific blocker of NE transporter, blocked NE uptake. Inhibition of PLD function in PC12 cells by the treatment of butanol suppressed the NE uptake. In contrast, overexpression of PLD1 in PC12 cells increased NE uptake efficiently. These results suggest that PLD activity is involved in NE uptake. We explored the action mechanism of PLD in NE uptake. PA phosphatase inhibitor, propranolol, blocks the formation of PKC activator diacylglycerol from PA. Propranolol treatment to PC12 cells blocked dramatically the uptake of NE. Specific PKC inhibitors, GF109203X and Ro31-8220, blocked NE uptake. Taken together, we suggest for the first time that PLD1 activity is involved in NE uptake via the activation of PKC.

  • PDF

Phorbol 12-Myristate 13-Acetate Enhances Long-Term Potentiation in the Hippocampus through Activation of Protein Kinase $C{\delta}$ and ${\varepsilon}$

  • Kim, Eung Chang;Lee, Myeong Jong;Shin, Sang Yep;Seol, Geun Hee;Han, Seung Ho;Yee, Jaeyong;Kim, Chan;Min, Sun Seek
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • Many intracellular proteins and signaling cascades contribute to the sensitivity of N-methyl-D-aspartate receptors (NMDARs). One such putative contributor is the serine/threonine kinase, protein kinase C (PKC). Activation of PKC by phorbol 12-myristate 13-acetate (PMA) causes activation of extracellular signal-regulated kinase (ERK) and promotes the formation of new spines in cultured hippocampal neurons. The purpose of this study was to examine which PKC isoforms are responsible for the PMA-induced augmentation of long-term potentiation (LTP) in the CA1 stratum radiatum of the hippocampus in vitro and verify that this facilitation requires NMDAR activation. We found that PMA enhanced the induction of LTP by a single episode of theta-burst stimulation in a concentration-dependent manner without affecting to magnitude of baseline field excitatory postsynaptic potentials. Facilitation of LTP by PMA (200 nM) was blocked by the nonspecific PKC inhibitor, Ro 31-8220 ($10{\mu}M$); the selective $PKC{\delta}$ inhibitor, rottlerin ($1{\mu}M$); and the $PKC{\varepsilon}$ inhibitor, TAT-${\varepsilon}V1$-2 peptide (500 nM). Moreover, the NMDAR blocker DL-APV ($50{\mu}M$) prevented enhancement of LTP by PMA. Our results suggest that PMA contributes to synaptic plasticity in the nervous system via activation of $PKC{\delta}$ and/or $PKC{\varepsilon}$, and confirm that NMDAR activity is required for this effect.

Protein Kinases as Pharmacological Targets for the Reduction of Interleukin-1 Expression in Lipopolysaccaride-Activated Primary Glial Cell

  • Sun Hu-Nan;Fang Wan;Jin Mei-Hua;Han Ying-Hao;Kim Sun-Uk;Lee Sang-Han;Kim Nam-Soon;Kim Cheol-Hee;Lee Dong-Seok
    • Biomedical Science Letters
    • /
    • v.10 no.4
    • /
    • pp.325-332
    • /
    • 2004
  • Inflammatory factor such as Interleukin-1 play important roles in determining the fate of both acute and chronic neurological disorders. We investigated whether inhibitors of PKC or PTK can serve as pharmacological agents to reduce IL-I production and the mechanisms underlying their pharmacological effects in a mixed population of glia. Inhibitors of PKC such as H7, Go6976 and Ro31-8220 significantly reduced both the mRNA and protein levels of IL-1α and IL-β in lipopolysaccharide-activated primary glial cells. While the PTK inhibitor genistein also significantly reduced the production of these cytokines, it did not affect the expression of their mRNA. Taken together, inhibitors of PKC and PTK could serve as pharmacological agents to reduce IL-1 production. However, the mechanisms underlying their pharmacological effects are different. Our results provide evidence that inhibitors of protein kinases can serve as pharmacological agents to modulate IL-1 production in glial cell, and in turn, alleviate neuronal injury.

  • PDF

The Phospholipase-Protein Kinase C-MEK-ERK Pathway is Essential in Mycobacteria-induced CCL3 and CCL4 Expression in Human Monocytes (사람 단핵구에서 결핵균에 의해 유도되는 CCL3 및 CCL4 발현에 대한 Phospholipase-Protein Kinase C-MEK-ERK 경로의 역할 분석)

  • Yang, Chul-Su;Song, Chang-Hwa;Jung, Saet-Byel;Lee, Kil-Soo;Kim, Su-Young;Lee, Ji-Sook;Shin, A-Rum;Oh, Jae-Hee;Kwon, Yu-Mi;Kim, Hwa-Jung;Park, Jeong-Kyu;Paik, Tae-Hyun;Jo, Eun-Kyeong
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.237-246
    • /
    • 2005
  • Background: Little information is available on the identification and characterization of the upstream regulators of the signal transduction cascades for Mycobacterium tuberculosis (M. tbc)-induced ERK 1/2 activation and chemokine expression. We investigated the signaling mechanisms involved in expression of CCL3 /MIP-1 and CCL4/MIP-1 in human primary monocytes infected with M. tbc. Methods: MAP kinase phosphorylation was determined using western blot analysis with specific primary antibodies (ERK 1/2, and phospho-ERK1/2), and the upstream signaling pathways were further investigated using specific inhibitors. Results: An avirulent strain, M. tbc H37Ra, induced greater and more sustained ERK 1/2 phosphorylation, and higher CCL3 and CCL4 production, than did M. tbc H37Rv. Specific inhibitors for mitogen-activated protein kinase (MAPK) kinase (MEK; U0126 and PD98059) significantly inhibited the expression of CCL3 and CCL4 in human monocytes. Mycobactetia-mediated expression of CCL3 and CCL4 was not inhibited by the Ras inhibitor manumycin A or the Raf-1 inhibitor GW 5074. On the other hand, phospholipase C (PLC) inhibitor (U73122) and protein kinase C (PKC)specific inhibitors ($G\ddot{o}6976$ and Ro31-8220) significantly reduced M. tbc-induced activation of ERK 1/2 and chemokine synthesis. Conclusion: These results are the first to demonstrate that the PLC-PKC-MEK-ERK, not the Ras-Raf-MEK-ERK, pathway is the major signaling pathway inducing M. tbc-mediated CCL3 and CCL4 expression in human primary monocytes.