• Title/Summary/Keyword: Road Section Travel Time Information

Search Result 12, Processing Time 0.022 seconds

Measures to Improve the Efficacy of Road User-Centered VMS Traffic Information Offering (도로이용자 중심의 VMS 교통정보 제공 효용성 향상 방안)

  • Yoon, Young-Min
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.190-201
    • /
    • 2021
  • The variable message sign (VMS) is equipment to improve the efficiency of traffic flow and safety of travel by providing real-time information to road users on traffic, road, weather situation, and traffic control due to construction. The information messages of the letter-based VMS taking up most of the VMS on the general national highways consist of section, travel time in sections, and road control situation. This study devised an improvement plan centered on road users, not road managers-centered existing message-based VMS through an analysis of road users' preference targeting the letter-based VMS operated in the general national highways in the Seoul Metropolitan Area. By presenting the measure for system improvement through which information on unexpected situations that road users prefer the most can be quickly and efficiently provided, this study aims to improve the efficiency of road user-centered VMS traffic information.

The Estimation of Link Travel Time for the Namsan Tunnel #1 using Vehicle Detectors (지점검지체계를 이용한 남산1호터널 구간통행시간 추정)

  • Hong Eunjoo;Kim Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • As Advanced Traveler Information System(ATIS) is the kernel of the Intelligent Transportation System, it is very important how to manage data from traffic information collectors on a road and have at borough grip of the travel time's change quickly and exactly for doing its part. Link travel time can be obtained by two method. One is measured by area detection systems and the other is estimated by point detection systems. Measured travel time by area detection systems has the limitation for real time information because it Is calculated by the probe which has already passed through the link. Estimated travel time by point detection systems is calculated by the data on the same time of each. section, this is, it use the characteristic of the various cars of each section to estimate travel time. For this reason, it has the difference with real travel time. In this study, Artificial Neural Networks is used for estimating link travel time concerned about the relationship with vehicle detector data and link travel time. The method of estimating link travel time are classified according to the kind of input data and the Absolute value of error between the estimated and the real are distributed within 5$\~$15minute over 90 percent with the result of testing the method using the vehicle detector data and AVI data of Namsan Tunnel $\#$1. It also reduces Time lag of the information offered time and draws late delay generation and dissolution.

  • PDF

Method and Reference Equipment for Evaluation of Travel Time Information (구간 통행시간정보 평가를 위한 기준장비 개발 및 평가 방법 연구)

  • Jeon, Hyeonmyeong;Cho, Yong-Sung;Ahn, Sun-Young;Lim, Sung Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.64-75
    • /
    • 2022
  • The ITS performance evaluation has been performed in the evaluation of traffic data collection equipment. However, evaluation of the data collection equipment alone cannot guarantee the reliability of the traffic information. So, ITS service evaluation has to be implemented institutionally. In this study, an evaluation method has been prepared to evaluate the accuracy of travel time information in road sections. In addition, a piece of portable reference equipment was developed to collect travel time data on the road. Field tests were performed on two national road sections managed by the Seoul Construction and Management Administration (SCMA) to prepare an evaluation method considering field conditions and evaluate the reference equipment's performance. Based on the test results, the improvement of the reference equipment to collect more samples and the adjustment of collection points were discussed.

A Study on Optimal Traffic Detection Systems by Introduction of Section Detection System (구간검지체계 도입을 통한 교통검지체계 설치기준 연구)

  • Kim, Nak-Joo;Lee, Seung-Jun;Oh, Sei-Chang;Son, Young-Tae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.47-63
    • /
    • 2011
  • A traffic detection system can be deemed as a traffic data and information collection system to serve traffic policies, traffic management, and user services. The system plays a crucial role in verifying whether or not the current traffic system has issues or problems by checking out traffic data. In addition, the system does so in finding out a point or a section where an issue or a problem has occurred, if any, and in examining the causes of the issue or problem, the extent of its impact that has occurred and spread, and a method for resolving it. However, the existing point detection system of Korea has too many flaws. In order to fix the flaws, in this paper, the theoretical characteristics of the section detection system were researched in relation to the calculation of travel time. In addition, the travel time of probe cars was obtained by field survey, and it was compared to that of spot and section detection data. Then, simulation was performed to determine the optimal section detection interval. In conclusion, introduction of optimal section detection system was examined in order to achieve the advanced road management including traffic policy, traffic management, and user services.

An Estimation of Link Travel Time by Using BMS Data (BMS 데이터를 활용한 링크단위 여행시간 산출방안에 관한 연구)

  • Jeon, Ok-Hee;Ahn, Gye-Hyeong;Hyun, Cheol-Seung;Hong, Kyung-Sik;Kim, Hyun-Ju;Lee, Choul-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.78-88
    • /
    • 2014
  • Now, UTIS collects and provides traffic information by building RSE 1,150(unit) and OBE about 51,000(vehicle). it's inevitable to enlarge traffic information sources which use to improve quality of UTIS traffic information for Stabilizing UTIS's service. but there are missing data sections. And, In this study as a way to overcome these problems, based on BIS(Bus information system) installed and operating in the capital area to develop normal vehicle's link transit time estimation model which is used realtime collecting BMS data, we'll utilize the model to provide missing data section's information. For these problem, we selected partial section of suwon-city, anyang-city followed by drive only way or not and conducted model estimating and verification each of BMS data and UTIS traffic information. Consequently, Case2,4,6,8 presented highly credibility between UTIS communication data and estimated value but In the Case 3,5 we determined to replace communication data of UTIS' missing data section too hard for large error. So we need to apply high credibility model formula adjusting road managing condition and the situation of object section.

Development and Evaluation of Road Safety Information Contents Using Commercial Vehicle Sensor Data : Based on Analyzing Traffic Simulation DATA (사업용차량 센서 자료를 이용한 도로안전정보 콘텐츠 개발 : 교통시뮬레이션 자료 분석을 중심으로)

  • Park, Subin;Oh, Cheol;Ko, Jieun;Yang, Choongheon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.74-88
    • /
    • 2020
  • A Cooperative Intelligent Transportation System (CITS) provides useful information on upcoming hazards in order to prevent vehicle collisions. In addition, the availability of individual vehicle travel information obtained from the CITS infrastructure allows us to identify the level of road safety in real time and based on analysis of the indicators representing the crash potential. This study proposes a methodology to derive road safety content, and presents evaluation results for its applicability in practice, based on simulation experiments. Both jerk and Stopping Distance Index (SDI) were adopted as safety indicators and were further applied to derive road section safety information. Microscopic simulation results with VISSIM show that 5% and 20% samples of jerk and SDI are sufficient to represent road safety characteristics for all vehicles. It is expected that the outcome of this study will be fundamental to developing a novel and valuable system to monitor the level of road safety in real time.

Study on Advisory Safety Speed Model Using Real-time Vehicular Data (실시간 차량정보를 이용한 안전권고속도 산정방안에 관한 연구)

  • Jang, JeongAh;Kim, HyunSuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.443-451
    • /
    • 2010
  • This paper proposes the methodology about advisory safety speed based on real-time vehicular data collected from highway. The proposed model is useful information to drivers by appling seamless wireless communication and being collected from ECU(Engine Control Unit) equipment in every vehicle. Furthermore, this model also permits the use of realtime sensing data like as adverse weather and road-surface data. Here, the advisory safety speed is defined "the safety speed for drivers considering the time-dependent traffic condition and road-surface state parameter at uniform section", and the advisory safety speed model is developed by considering the parameters: inter-vehicles safe stopping distance, statistical vehicle speed, and real-time road-surface data. This model is evaluated by using the simulation technique for exploring the relationships between advisory safety speed and the dependent parameters like as traffic parameters(smooth condition and traffic jam), incident parameters(no-accident and accident) and road-surface parameters(dry, wet, snow). A simulation's results based on 12 scenarios show significant relationships and trends between 3 parameters and advisory safety speed. This model suggests that the advisory safety speed has more higher than average travel speed and is changeable by changing real-time incident states and road-surface states. The purpose of the research is to prove the new safety related services which are applicable in SMART Highway as traffic and IT convergence technology.

A Study on the Factors Affecting the Stopping Time and Punctuality of Bus Stop: A Case of Bus Stop by Roadside Bus Only Lane (버스 정류장 정차시간 및 정시성에 영향을 미치는 요인에 관한 연구: 가로변 버스전용차로의 정류장을 중심으로)

  • JANG, Jae-Min;LEE, Young-Inn;LEE, Keun
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.3
    • /
    • pp.234-246
    • /
    • 2017
  • The Seoul metropolitan government introduced the bus information systems, bus rapid transit to increase travel speed and punctuality but still suffer from insufficiency. This paper delivers a study verifying the external factors at near the bus stops. The dependent variable was set to the standard deviation of (1) travel time and (2) travel time to and from the bus stop in this study. The independent variables were set to (1) the number of routes, (2) traffic volume by bus type, (3) the number of bus bays, (4) the possibility of passing, (5) the distance to crosswalks and intersections, and (5) the presence of residential road. The results showed that the most significant factors included the link section speed, number of bus bay, distance to crosswalk, and the possibility of passing.

A Study on the Optimum-Path for Traffic of Road Using GIS (GIS를 이용한 도로교통(道路交通)의 최적경로(最適經路) 선정(選定)에 관한 연구)

  • Oh, Myoung-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.2 s.10
    • /
    • pp.131-144
    • /
    • 1997
  • Traffic jam densified day by day is phenomenon to occur lack of the road capacity in comparison with traffic density, but lack of the road cannot be concluded by main cause of traffic ism. Because the central function of a city would be concentrated upon the downtown and traffic demand would not be evenly distributed by the classification of an hour. Therefore, this study based on the fact that each driver will select the route generating traffic delay very low when path choice from origin to destination in travel plan estimating the quality of passage could be maintained the speed he want will approach to a characteristic grasp of a road, traffic, driver changing every moment by traffic-demand of road increased as a geometrical series with analysis a classification of a street, a intersection along the path on traffic density and highway capacity analysis the path using GIS techniques about complex street network, also will get the path of actual optimum for traffic delay trend creating under various condition the classification per a hour, a day of week and an incident through network such as analysis for traffic generation zone adjacent about street, intersection, afterward will expect the result increasing efficiency of the road-use through a good distribution of traffic by optimum-path choice, accordingly will prepare the scientific, objective, appropriate basis to decide the reasonable time of a road-widen and expansion through section analysis along a rate of traffic volume vs. road capacity.

  • PDF

Empirical Study of the PLSP (Priority Land and Signal Preemption for Emergency Vehicles (긴급차량의 우선차로 및 우선신호 도입효과 -청주시를 대상으로-)

  • Lee, Jun;Ham, Seung Hee;Lee, Sang Jo
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.650-657
    • /
    • 2020
  • Purpose: In this study, the effectiveness of pilot project of PLSP (Priority Lane and Signal Preference) system, which was operated in Cheongju City, was analyzed. Method: The priority signal was operated by a police officer switching to a blue signal when approaching a fire truck through CCTV, and the priority lane of emergency vehicles was displayed on the road to enable preferential traffic. VISSIM simulation analysis was performed for the 1.2km section (3.8km) of the pilot project section and vehicle data was analyzed for some of the test operation sections. Result: Simulation analysis shows that the moving speed of the emergency vehicle can be increased by 42 km/h with the introduction of PLSP, which can be increased by approximately twice the speed. Travel time was reduced by about 3 minutes, and considerable improvements of 69% compared to cities that are not operating was analyzed. The pilot operation of Cheongju City showed a time-shortening effect of about two minutes on average, with the average time reaching 4 minutes and 14 seconds in the first period and the average time reaching 5 minutes and 40 seconds in the second period. Conclusion: The system has been shown to be effective in minimizing time-to-site arrival of emergency vehicles.