• Title/Summary/Keyword: Road bed

Search Result 81, Processing Time 0.025 seconds

Cooling and Deformation Analysis of a Layered Road in a FDM Type 3D Printing Through Thermal-structural Coupled Simulation

  • Kim, S.L.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.216-223
    • /
    • 2017
  • The additive manufacturing technology, also called 3D printing, is growing fast. There are several methods for 3D printing. Fused deposition modeling (FDM) type 3D printing is the most popular method because it is simple and inexpensive. Moreover, it can be used for printing various thermoplastic materials. However, it contains the cooling of layered road and causes thermal shrinkage. Thermal shrinkage should be controlled to obtain high-quality products. In this study, temperature distribution and cooling behavior of a layered road with cooling are studied through computer simulation. The thermal shrinkage of the layered road was simulated using the calculated temperature distribution with time. Shape variation of the layered road was predicted as cooling proceeded. Stress between the bed and the layered road was also predicted.This stress was considered as the detaching stress of the layered road from the bed. The simulations were performed for various thermal conductivities and temperatures of the layered road, bed temperature, and chamber temperature of a 3D printer. The simulation results provide detailed information about the layered road for FDM type 3D printing under operational conditions.

Development of Tire Test Bed for Dynamic Behavior Analysis of Vehicles on Off-roads (비포장노면 차량 거동 분석을 위한 타이어 테스트베드 개발)

  • Lee, Dae-Kyung;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.29-35
    • /
    • 2022
  • When a vehicle is driven off a road surface, the deformations of the road surface and tire are combined. Consequently, the dynamic behavior of wheel movement becomes difficult to predict and control. Herein, we propose a tire test bed to capture the dynamic behavior of tires moving on sand and soil. Based on this study, it is discovered that the slip rate can be controlled, and the vertical force can be measured using a load cell. The test results show that this test bed can be useful for capturing the dynamic behavior of the tire and validating dynamic simulations. In fact, the tire test bed developed in this study can be used to verify the results of computer simulations. In addition, it can be used for basic experiments pertaining to the speed control of unmanned autonomous vehicles.

Study on the Development of K-City Roadmap through the Standard Analysis of the Test-Bed for Automated Vehicles in China (중국 자율주행차 테스트베드 관련 표준 분석을 통한 K-City 고도화 방안 수립에 관한 연구)

  • Lee, Sanghyun;Ko, Hangeom;Lee, Hyunewoo;Cho, Seongwoo;Yun, Ilsoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.1
    • /
    • pp.6-13
    • /
    • 2022
  • The Ministry of Land, Infrastructure and Transport (MoLIT) and the Korean Automobile Testing and Research Institute (KATRI) are supporting the development of Lv.3 automated vehicle (hereinafter, AV) technology by constructing an automated driving pilot city (as known as K-City) equipped with total 5 evaluation environments (urban, motorway, suburban, community road, and autonomous parking facility) which is a test bed exclusively for AV (2017~2018). An upgrade project is in a progress to materialize harsh environments such as bad weather (rain, fog, etc.) and reproduction of communication jamming (GPS blocking, etc.) with the purpose of supporting the development of Lv.4 connected & automated vehicle (hereinafter, CAV) technology (2019~2022). We intend to proactively establish a national level standard for CAV test-bed and test road requirements, test method, etc. for establishment of a road map for the construction of the test bed which is being promoted step by step and analyze and, when required, benchmark the case of China that has announced and is utilizing it. Through this, we plan to define standardized requirements (evaluation facility, evaluation system, etc.) on the test bed for the development of Lv.4/4+ CAV technology and utilize the same for the design and construction of a test bed, establishment of a road map for the construction of a real car-based test environment related to the support for autonomous driving service substantiation, etc. through provision of an evaluation environment utilizing K-City, and the establishment of a K-City upgrade strategies, etc.

Effects of Forest Environmental Factors and Forest Road Structures on the Stability of Forest Road in Granite Areas (화강암지역의 산림환경 및 도로구조인자가 임도의 안정성에 미치는 영향)

  • Yim, Byung-Jun;Ma, Ho-Seop
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • To investigate the influence of forest road characteristics and site conditions on the stability of forest-road in granite area, four forest roads had been selected in Kyongbuk regions. The total of 13 road characteristic variables were evaluated by the discriminant analysis. The factors influencing the stability of forest road were bed rock, slope length, coverage, hardness, side-ditch erosion and road width. But aspect and soil texture were not significant for the stability in this area. In the correlation between forest environment and road structure, hardness and bed rock was highly significant in stability group, and coverage and side-ditch erosion was highly significant in instability group. 75 of 175 segments were instable whereas the others were stable. The centroids value by discriminant function in the stability and instability were estimated to 3.0585 and -1.9116, respectively. The stability criterion of forest road was discriminated from the centroids value of the each group. The main factors contributing the stability of forest road were significant in order of side-ditch erosion, coverage, soil texture, elevation, gradient, slope length and construction year. The prediction rate of discriminant function for stability evaluation of forest road was as high as 97.44%. In conclusion, the forest road structure factors such as length, coverage and slope gradient were controlled by construction techniques. If the factors like those should be considered in design, construction and forest road management, the stability of forest road may increase more. And also, it is necessary to take slope protection measures like small terraces and retaining walls for stability of cut slope.

  • PDF

Measurements and Analysis of Deformation States in Roadbed in Gyeongbu High Speed Railway (경부고속철도 토공부에 대한 변형상태 계측 및 분석)

  • Jin, Nam-Hee;Kim, Nam-Hyuk;Shim, Hyun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1542-1549
    • /
    • 2009
  • The function of subgrade in the railway is to support track load on the subgrade as well as train load. Unlike the traditional railway, the uppermost subgrade layer in the Gyeongbu high speed railway was constructed as the reinforced road bed. The reinforced road bed comprises sub-ballast in the upper part and grade ballast in the lower part. The filling material such as soil and rocks in the subgrade can be settled by consolidation of original ground, compression due to self weight, plastic displacement due to train operation, and unequal settlement due to embankment material or improper compaction, therefore many efforts have been given for sufficient compaction and use of proper filling materials in the construction stage. The purpose of this study is to investigate the deformation state of subgrade in the Gyeongbu high speed railway. The investigation on the subgrade settlement was performed by choosing representative sections suspected to be settled based on the previous GPR test results and track maintenance history, measuring the settlement for some time period after installing settlement measuring instruments on and under the reinforced road bed. and analyzing the long-term subgrade settlement data from monitoring system which was installed at the construction stage of the high speed railway.

  • PDF

Support Modular System for Sustainable-Perpetual-Modular Road (지속가능한 장수명 모듈러 도로를 위한 지지 모듈러 시스템)

  • Donggyou Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2023
  • In this study, the performance of the support modular system, as substructure of the proposed sustainable-perpetual modular road system to reduce road construction time and maintenance costs was evaluated. A modular road system consisting of 4 support modular cross-beams with a lower curved surface was constructed on the test-bed. Six load cells and eight LVDTs were installed in the center part of two cross-beam support modular systems. Two loads, 50kN and 100kN, were applied to 15 points on the pavement slab to measure the load and displacement occurring in the modular road system. The measured displacements were less than 1 mm, so it is considered that there was no problem in the stability of the actual road. When comparing the two applied loads and the measured loads in the field test, it was considered that the load transmitted to the ground under the support modular system is very small. It is considered that the modular road system with the support modular system is applicable to the actual road site.

Experimental Analysis of V2X Communication Performance based on WAVE at the SMART-Highway Test-bed (스마트하이웨이 테스트베드에서의 WAVE 기반 V2X 통신 성능에 대한 실험적 분석)

  • Jung, Han-Gyun;Lim, Ki-Taeg;Shin, Dae-Kyo;Yoon, Sang-Hun;Jin, Seong-Keun;Jang, Soo-Hyun;Shin, Joon-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.115-128
    • /
    • 2016
  • Many research activities to reduce accidents on the road and to improve traffic efficiency have been performed and almost research projects are developing technologies and services based on C-ITS technology nowadays. The main concept of C-ITS is improving road safety and traffic efficiency by sharing and reproducing information between various elements. To accomplish this goal, V2X communication technology has been adopted. In Korea, we have studied V2X communication technology in support of SMART-Highway research project and are managing test-bed to verify the developed technology recently. In this paper, we introduce SMART-Highway test-bed and show the procedure and result of V2X communication performance analysis on the test-bed.

Research on Transition of Road Bed of Wuhan-Guangzhou Passenger Line and Bridge

  • Kang, Bo-Soon;Jun, Yang
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.180-186
    • /
    • 2009
  • High speed railway challenge the design, construction and maintaining of traditional railway, many traditional design concepts have been changed. Transition of railway and bridge has two main problems. one is that different lines have different ability of resisting distortion in area of trial load, which was known that problem of smooth transition of stiffness, the other is that differential settlement between artificial structure and earth structure cause bending of railway. The two problems have effect on train moving. The principle of processing transition of railway and bridge is same in world, but it is difficult to find relationship between design standard of transition, vehicle performance, line standard, design speed and so on form documentation and data reports. Based on mechanics, the paper analyzed dynamic performance of transition of high speed railway, studied various rough elements which is effective to train moving, built mathematical model of interaction of train and transition of high speed railway and developed numerical simulation software. In various different work conditions, we did great quantity of numerical simulation, comprehensive analysis and performance analysis.

  • PDF

A Study on the Supportive Stiffness in Transitional Zones through Moving Load-Based Three-Dimensional Modeling (이동하중과 3차원 모델링을 통한 접속부 지지강성연구)

  • Woo, Hyeun-Joon;Lee, Seung-Ju;Kang, Yun-Suk;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1542-1549
    • /
    • 2011
  • The Transitional zone between bridge abutment and earthwork is one of the representative vulnerable zones in railway where differential settlements may take place due to the different supportive stiffness. Although transitional zones are managed with stricter standards than those of the other earthwork zones either in the design and construction stages, it is very difficult to prevent differential settlement perfectly. A three-dimensional numerical analyses were performed by applying train moving load in this study. The analytical model including abutments and earthwork zones was constituted with rail, sleepers, track concrete layer (TCL), hydraulic stabilized base (HSB), reinforced road bed, and road bed using railway and road base structure. The clamp connecting the rail and sleeper were also modeled as the element with spring coefficient. The train wheel is modeled in the actual size and moved on the rail with 300 km/hr speed. The deformation characteristics at each point of the rail and the ground were considered in detail when moving the train wheel. The analysis results were compared with those from the two-dimensional analysis without considering moving load. The research results show that displacement and stress were greater in the three-dimensional analysis than in other analyses, and the three-dimensional analysis with moving load should be performed to evaluate railway performance.

  • PDF

Test Bed for Vehicle Longitudinal Control Using Chassis Dynamometer and Virtual Reality: An Application to Adaptive Cruise Control

  • Mooncheol Won;Kim, Sung-Soo;Kang, Byeong-Bae;Jung, Hyuck-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1248-1256
    • /
    • 2001
  • In this study, a test bed for vehicle longitudinal control is developed using a chassis dynamometer and real time 3-D graphics. The proposed test bed system consists of a chassis dynamometer on which test vehicle can run longitudinally, a video system that shows virtual driver view, and computers that control the test vehicle and realize the real time 3-D graphics. The purpose of the proposed system is to test vehicle longitudinal control and warning algorithms such as Adaptive Cruise Control(ACC), stop and go systems, and collision warning systems. For acceleration and deceleration situations which only need throttle movements, a vehicle longitudinal spacing control algorithm has been tested on the test bed. The spacing control algorithm has been designed based on sliding mode control and road grade estimation scheme which utilizes the vehicle engine torque map and gear shift information.

  • PDF