• Title/Summary/Keyword: Robot Arm control

Search Result 399, Processing Time 0.025 seconds

Study on the Collision Avoidance of a Redundant Robot Arm Using Fuzzy Control (퍼지 제어기를 이용한 여유자유도 로봇 팔의 장애물 우회에 관한 연구)

  • 황재석;박찬호;이병룡;양순용;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.345-348
    • /
    • 1997
  • In this paper, a motion control algorithm is developed using a fuzzy control and the optimization of performance function, which makes a robot arm avoid an unexpected obstacle when the end-effector of the robot arm is moving to the goal position. During the motion, if there exists no obstacle, the end-effecter of the robot arm moves along the pre-defined path. But if there exists an obstacle and close to the robot arm, the fuzzy motion controller is activated to adjust the path of the end-effector of the robot arm. Then, the robot arm takes the optimal posture for collision avoidance with the obstacle. To show the feasibility of the developed algorithm, numerical simulations are carried out with changing both the positions and sizes of obstacles. It was concluded that the proposed algorithm gives a good performance for obstacle avoidance.

  • PDF

High-Precision Contour Control by Gaussian Neural Network Controller for Industrial Articulated Robot Arm with Uncertainties

  • Zhang, Tao;Nakamura, Masatoshi
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.272-282
    • /
    • 2001
  • Uncertainties are the main reasons of deterioration of contour control of industrial articulated robot arm. In this paper, a high-precision contour control method was proposed to overcome some main uncertainties, such as torque saturation, system delay dynamics, interference between robot links, friction, and so on. Firstly, each considered factor of uncertainties was introduced briefly. Then proper realizable objective trajectory generation was presented to avoid torque saturation from objective trajectory. According to the model of industrial articulated robot arm, construction of Gaussian neural network controller with considering system delay dynamic, interference between robot links and friction was explained in detail. Finally, through the experiment and simulation, the effectiveness of proposed method was verified. Furthermore, based on the results it was shown that the Gaussian neural network controller can be also adapted for the various kinds of friction and high-speed motion of industrial articulated robot arm.

  • PDF

Vibration Control of a Flexible Fobot Manipulator (유연한 로봇팔의 진동제어)

  • 신효필;윤여산;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.229-232
    • /
    • 1996
  • The position control accuracy of the robot arm is decreased significantly when a long arm robot is operated at high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system will be necessarily designed with its elastic modes taken into account. In this paper, the vibration control of a one-link flexible robot arm is presented. The robot system consists of a flexible arm manufactured with thin aluminium plate, AC servomotor with a harmonic drive for speed reduction, optical encoder and accelerometer. The system is modeled with limited number of elastic modes, and its parameters are determined from the results of the experiments. The implemented control schemes are LQ control and sliding mode control. The experiments and digital simulations are carried out to test the validity of the system modeling, controller design, and active control implementation.

  • PDF

Design and Control of Industrial Dual Arm Robot (산업용 양팔로봇의 설계 및 제어)

  • Park, Chan-Hun;Park, Kyoung-Taik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.58-65
    • /
    • 2008
  • The study on dual arm robot manipulator which consists of two 6-DOF srms and one 2-DOF torso is introduced. This dual arm robot manipulator is designed for automation of assembly process in automotive manufacturing line. Each industrial 6-DOF arm can be used as a stand-alone type of industrial robot manipulator with 6-DOF and as a manipulator part of dual arm robot at the same lime. These structures help the robot maker willing to succeed in emerging market of dual arm robots have the high competitive power for the current industrial robot market and the emerging market of dual arm robot at the same time. The research results of the design concept, workspace analysis and the PC-based controller will be introduced.

Development of a New 5 DOF Mobile Robot Arm and its Motion Control System

  • Choi Hyeung-Sik;Lee Chang-Man;Chun Chang-Hun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1159-1168
    • /
    • 2006
  • In this paper, a new revolute mobile robot arm with five degree of freedom (d.o.f) was developed for autonomous moving robots. As a control system for the robot arm, a distributed control system composed of the main controller and five motor controllers for arm joints was developed. The main controller and the motor controllers w ε re developed using the ARM microprocessor and the TMS320c2407 microprocessor, respectively. A new trajectory tracking algorithm for the motor controllers was devised employing pre-generated off-line trajectory data. Also, a 3-D simulator based on the openGL software to simulate the motion of the robot arm was developed. To validate the performance of the robot system, experiments to track a specified trajectory were performed.

The multiple Control Law Design of the Variable Structure Control for Angular Position Control of the Robot Arm with an Indirect Driving Joint Using Balance of the Inertial Moment (관성모멘트의 균형을 이용하는 간접구동관절을 갖는 로보트아암의 각위치 제어를 위한 가변구조제어기의 다중 제어법칙 설계)

  • Kim, Joong-Wan;Kang, Dae-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.76-83
    • /
    • 1996
  • We have developed the unconventional robot arm which is composed of the two main parts, one is a ball screw and the other is a robot arm. The dynamic systems of the robot arm and ball screw are unstable systems coupled with each other. The ball screw mechanism is unstable system but controllable system. The robot arm's dynamics is quasi stable system when ball screw's angular position is zero, else, unstable system. Our system has the duality between stability and controllability at the view point of control. This duality causes difficulty to control of the robot arm using normal control law. We have investigated the location of the characteristic roots of the dynamic equation. And we have found out that the best condition for the control of the arm is quasi stable state. In this paper, we have proposed multiple control laws which are consist of three components to guarantee the stability and controllability simultaneously. The computer simulations were carried out based on VSC about the angular position control of the robot arm, and it is confirmed that the good performances could be obtained by using new controller.

  • PDF

The Design of Humanoid Robot Arm based on the Morphological and Neurological Analysis of Human Arm (인간 팔의 형태학적.신경학적 분석 기법에 기반한 휴머노이드 로봇 팔 설계)

  • Choi, Hyeong-Yoon;Bae, Young-Chul;Moon, Yong-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.555-559
    • /
    • 2007
  • There are few representative humanoid robots including Japanese ASIMO from Honda and HUBO from KAIST. We cannot consider ASIMO and HUBO the perfect humanoid robots, however. The basic principles when developing humanoid robot is to make them to work in a similar way as human's movement of arm. In this paper, we proposed method of designing humanoid robotic arms based on the morphological.eurological analysis of human's arm tor robot's arm to work in a similar way as human's ann, and we also implemented arm movement control system to humanoids robot by using SERCOS communication.

Flexible Motion Realized by Force-free Control: Pull-Out Work by an Articulated Robot Arm

  • Kushida, Daisuke;Nakamura, Masatoshi;Goto, Satoru;Kyura, Nobuhiro
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.464-473
    • /
    • 2003
  • A method for force-free control is proposed to realize pull-out work by an industrial articulated robot arm. This method achieves not only non-gravity and non-friction motion of an articulated robot arm according to an exerted force but also reflects no change in the structure of the servo controller. Ideal performance of a pull-out work by the force-free control method was assured by means of simulation and experimental studies with a two-degree-of-freedom articulated robot arm.

Obstacle-Avoidance System for Redundant Field Robot

  • Park, Chan-Ho;Hwang, Jea-Suk;Lee, Byung-Ryoung;Yang, Soon-Yong;Ahn, Kyung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.130.1-130
    • /
    • 2001
  • In this paper, a motion control algorithm is developed using a fuzzy control and the optimization of performance function, which makes a robot arm avoid an unexpected obstacle when the end-effector of the robot arm is moving to the goal position. During the motion, if there exists no obstacle, the end-effector of the robot arm moves along the pre-defined path. But if there exists an obstacle and close to the robot arm, the fuzzy motion controller is activated to adjust the path of the end-effector of the robot arm. Then, the robot arm takes the optimal posture for collision avoidance with the obstacle. To show the feasibility of the developed algorithm, numerical simulations are carried out with changing both the positions and sizes of obstacles. It was concluded ...

  • PDF

Development of Anthropomorphic Robot Hand and Arm by Tendon-tubes (텐던-튜브를 이용한 인체모방형 로봇핸드 및 암 개발)

  • Kim, Doo-Hyeong;Shin, Nae-Ho;Oh, Myoung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.964-970
    • /
    • 2014
  • In this study we have developed an anthropomorphic robot hand and arm by using tendon-tubes which can be used for people's everyday life as a robot's dynamic power transmission device. Most previous robot hands or arms had critical problem on dynamic optimization due to heavy weight of power transmission parts which placed on robot's finger area or arm area. In order to resolve this problem we designed light-weighted robot hand and arm by using tendon-tubes which were consisted of many articulations and links just like human's hand and arm. The most prominent property of this robot hand and arm is reduction of the weight of robot's power transmission part. Reduction of weight of robot's power transmission parts will allow us to develop energy saving and past moving robot hands and arms which can be used for artificial arms. As a first step for real development in this study we showed structural design and demonstration of simulation of possibility of a robot hand and arm by tendon-tube. In the future research we are planning to verify practicality of the robot hand and arm by applying sensing and controlling method to a specimen.