• Title/Summary/Keyword: Robot Manipulator

Search Result 1,053, Processing Time 0.031 seconds

Redundancy resolution method of omni-directional mobile manipulator system (전방향 이동 머니퓰레이터 시스템의 여유자유도 최적화 방법)

  • Kwon, Soon-Jae;Jeong, Jae-Ung
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.75-80
    • /
    • 2015
  • Typically, robot system configured by articulated robot manipulator with 1 DOF transfer unit is being applied in automotive manufacturing automation process. Especially, 1 DOF transfer unit is necessary to extend workspace of robot manipulator. In this configuration, because transfer unit works only one direction, robot manipulator only works in one side in case of car body painting or sealing automation process. it is necessary three robot manipulator system at least. In this paper, in order to robot manipulator works effectively in car body sealing automation application, we are suggested omni-directional manipulator system and conducted studying on redundancy resolution method to solve manipulability-optimal problem.

Inverse Kinematic Analysis of a Binary Robot Manipulator using Neural Network (인공신경망을 이용한 2진 로봇 매니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Jung, Jong-Dae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.211-218
    • /
    • 1999
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot’s trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. In this paper, we solve the inverse kinematic problem of a binary parallel robot manipulator using neural network and test the validity of this structure using some arbitrary points m the workspace of the robot manipulator. As a result, we can show that the neural network can find the nearest feasible points and corresponding binary states of the joints of the robot manipulator

  • PDF

Inverse Kinematic Analysis of a Three Dimensional Binary Robot Manipulator (3차원 2진 로봇 머니퓰레이터의 역기구학적 해석)

  • Ryu, Gil-Ha;Rhee, Ihn-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.205-212
    • /
    • 1999
  • A three dimensional binary parallel robot manipulator uses actuators which have only two stable states and its structure is variable geometry truss. As a result, it has a finite number of states and fault tolerant mechanism because of kinematic redundancy. This kind of robot manipulator has some advantages compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. Because the number of states of a binary robot manipulator grows exponentially with the number of actuators it is very difficult to solve and inverse kinematic problem. The goal of this paper is to develop an efficient algorithm to solve an inverse kinematic problem of three dimensional binary parallel robot manipulator using a backbone curve when the number of actuators are too much. We first derive the coordinate transformations associated with a three degree of freedom in-parallel actuated robot manipulator. The backbone curve is generated optimally by considering the maximum roll and pitch angles of the robot manipulator configuration and length of link. Then, the robot manipulator is fitted along the backbone curve with some criterion.

  • PDF

A Study on the Configuration Control of a Mobile Manipulator Based on the Optimal Cost Function

  • Kang Jin-Gu;Lee Kwan-Houng
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2005
  • One of the most important feature of the Mobile Manipulator is redundant freedom. Using the redundant freedom, Mobile Manipulator can move various mode, perform dexterous motion. In this paper, to improve robot job ability, as two robots perform a job in co-operation control, we studied optimal position and posture of Mobile Manipulator with minimum movement of each robot joint. Kinematics of mobile robot and task robot is solved. Using mobility of Mobile robot, weight vector of robots is determined. Using Gradient methode, global motion trajectory is minimized. so the job which Mobile Manipulator perform is optimized. The proposed algorithm is verified with PURL-II which is Mobile Manipulator combined Mobile robot and task robot. and discussed the result.

Two dimensional hybrid control using the relative motion between the robot manipulator and a workpiece (로봇 매니퓰레이터와 공작물의 상대운동에 의한 위치/힘의 2차원 하이브리드 제어)

  • 진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1577-1580
    • /
    • 1997
  • A hybrid control method based on using the relative motion between a manipulator and a workpiece is described for a two-dimensional manipulator, in which it is assumed that there are no collisions between the robot manipulator and the workpiece, and that we use a computed force law which is similar to the computed torque law in the trajectory tracking problem of a robot manipulator. The effectiveness of the proposed hybrid control emthod is illustratec by some simulations.

  • PDF

Robust Control of a Robot Manipulator with Revolute Joints (회전 관절형 로봇 매니플레이터의 강인제어)

  • 신규현;이수한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.435-438
    • /
    • 2002
  • In this paper, a robust controller is proposed to control a robot manipulator which is governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require the dynamic model or parameter values of a robot manipulator. It, however, requires uncertainty bounds which are derived by using properties of serial link robot dynamics. The stability of the robot with the controller is proved by Lyapunov theory. The results of computer simulations show that the robot system is stable, and has excellent trajectory tracking performance.

  • PDF

Optimal Configuration Control for a Mobile Manipulator

  • Kang, Jin-Gu;Jin, Tae-Seok;Kim, Min-Gyu;Lee, Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.605-621
    • /
    • 2000
  • A mobile manipulator-a serial connection of a mobile platform and a task robot-is redundant by itself. Using its redundant freedom, a mobile manipulator can move in various modes, i. e., can perform dexterous tasks. In this paper, to improve task execution efficiency utilizing redundancy, optimal configurations of the mobile manipulator are maintained while it is moving to a new task point. Assuming that a task robot can perform the new task by itself, a desired configuration for the task robot can be pre-determined. Therefore, a cost function for optimality can be defined as a combination of the square errors of the desired and actual configurations of the mobile platform and of the task robot. In the combination of the two square errors, a newly defined mobility of a mobile platform is utilized as a weighting index. With the aid of the gradient method, the cost function is minimized, so the tasle that the mobile manipulator performs is optimized. The proposed algorithm is experimentally verified and discussed with a mobile manipulator, PURL-II.

  • PDF

Kinematic Analysis of a Binary Robot Manipulator (2진 로봇 매니퓰레이터의 기구학적 해석)

  • 류길하
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.162-168
    • /
    • 1998
  • The traditional robot manipulators are actuated by continuous range of motion actuators such as motors or hydraulic cylinders. However, there are many applications of mechanisms and robotic manipulators where only a finite number of locations need to be reached, and the robot's trajectory is not important as long as it is bounded. Binary manipulator uses actuators which have only two stable states. As a result, binary manipulators have a finite number of states. The number of states of a binary manipulator grows exponentially with the number of actuators. This kind of robot manipulator has some advantage compared to a traditional one. Feedback control is not required, task repeatability can be very high, and finite state actuators are generally inexpensive. And this kind of robot manipulator has a fault tolerant mechanism because of kinematic redundancy. This paper develops algorithms for kinematics and workspace analysis of a binary manipulator.

  • PDF

A Study on Posture Control Algorithm of Performing Consecutive Task for Mobile Manipulator (이동매니퓰레이터의 연속작업 수행을 위한 자세 제어 알고리즘에 관한 연구)

  • Kim, Jong-Iek;Rhyu, Kyeong-Taek;Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.153-160
    • /
    • 2008
  • One of the most important features of the Mobile Manipulator is redundant freedom. Using it's redundant freedom, a Mobile Manipulator can move in various modes, and perform dexterous motions. In this paper, to improve robot job performance, two robots -mobile robot, task robot- are joined together to perform a job, we studied the optimal position and posture of a Mobile Manipulator to achieve a minimum of movement of each robot joint. Kinematics of mobile robot and task robot is solved. Using the mobility of a Mobile robot, the weight vector of robots is determined. Using the Gradient method, global motion trajectory is minimized, so the job which the Mobile Manipulator performs is optimized. The proposed algorithm is verified with PURL-II which is Mobile Manipulator combined Mobile robot and task robot, and the results are discussed.

  • PDF

Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation (불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험)

  • 한명철;하인철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.