• Title/Summary/Keyword: Robot Spray

Search Result 23, Processing Time 0.032 seconds

An Integrated Robot-Trajectory-Planning Scheme for Spray Painting Operations (스프레이 페인팅 작업을 위한 일관화된 로보트 궤적계획법에 관한 연구)

  • Suh, Suk-Hwan;Woo, In-Kee
    • IE interfaces
    • /
    • v.3 no.2
    • /
    • pp.23-38
    • /
    • 1990
  • The use of robots for painting operations is a powerful alternative as a means for automation and quality improvement. A typical method being used for motion planning of the painting robot is to guide the robot along the desired path : the "lead-through" method. Although this method is simple and has been widely used, it has several drawbacks a) The robot cannot be used during the teaching period, b) A human is exposed to a hostile environment, c) The motions taught are, at best, human's skill level. To deal with the above problems, an integrated robot-trajectory planning scheme is presented. The new scheme takes CAD data describing the shape and geometry of the objects, and outputs an optimal trajectory in the sense of coating thickness and painting time. The purpose of this paper is to investigate theoretical backgrounds for such a scheme including geometric modeling, painting mechanics and robot trajectory planning, and develop algorithms for generating spray gun paths and minimum-time robot trajectories. Future study is to implement these algorithms on an workstation to develop an integrated software system ; ATPS(Automatic Trajectory Planning System) for spray painting robots.

  • PDF

Development of Semi-Autonomous Pesticide Spray Robot for Glass House Rose Farming (시설농장 무선원격 반자동 방제시스템 개발)

  • Kim, Kyoung-Chul;Ryuh, Beom-Sahng;Yang, Chang-Wan;Jang, Kyo-Gun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.34-42
    • /
    • 2010
  • Agricultural automation has become more and more important by environmental change. The automation demands the highest technology due to the ever changing various conditions in agriculture system. In the paper, semi-autonomous pesticide spray robot system has been developed for rose farming in the glass house. The robot is in autonomous mode during pesticide spraying process driven on pipe rail. The robot is manually driven while moving from a rail to the next rail. The drive platform and autonomous operation control system are developed based on IT fusion technology. The pesticide spray system is also developed with nozzles and booms for precision mist spray system. Experimental data of nozzle test is also included.

Development of Agriculture Robot for Unmanned Management in Controlled Agriculture (시설 농업 무인 관리를 위한 식물 생산 로봇 개발)

  • Kim, Kyoung-Chul;Ryuh, Beom-Sahng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.444-450
    • /
    • 2011
  • Environmental change, labor shortage, and international trade politics make agricultural automation ever more important. The automation demands the highest technology due to the nature of agriculture. In this paper, autonomous pesticide spray robot system has been developed for rose farming in the glass house. We developed drive platform, navigation/localization system, atomization spray system, autonomous, remote, and manual operation system, and monitoring system. The robot will be a great contribution to automation of hazardous labor-demanding chore of pesticide control in glass houses.

An Accurate and Efficient Method of the Spray Paint Simulation for Robot OLP (로봇 Off-Line Programming을 위한 페인트 스프레이 시뮬레이션 방법론 개발)

  • Lee, Seung-Chan;Song, In-Ho;Borm, Jin-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.4
    • /
    • pp.296-304
    • /
    • 2008
  • Recently, various attempts are being done to apply off-line programming system to field of paint robot. But most commercial simulation softwares have problems that are slow simulation speed and not support various painting paramenters on simulation. This paper proposes enhanced paint simulation method for off-line programming system. For these, this method used the mathematical model of flux field from a previous research. The flux field has the flux distribution function, which reflects on the feature of paint spray. A previous research derived this flux distribution function for an integral function and calculated paint thickness function for an integral function. But if flux distribution function is defined as an integral function, it is inadequate to use for real-time simulation because a number of calculation is needed for estimation of paint thickness distribution. Therefore, we defined the flux distribution function by numerical method for reducing a mount of calculation for estimation of paint thickness. We derived the equation of paint thickness function analytically for reducing a mount of calculation from the paint distribution function defined by numerical method. In order to prove proposed paint simulation method this paper compares the simulated and measured thickness. From this comparison this paper show that paint thickness distribution is predicted precisely by proposed spray paint simulation process.

A Study on Optimization of Board Molding Process with GMPU Technology (GMPU 공법을 이용한 보드 성형 공정 최적화 연구)

  • Choi, Dong-Jo;Park, Hong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.81-87
    • /
    • 2009
  • Lightweight board has been used for manufacturing various fields of automotive interior trims for years. The GMPU board was constructed with glass fiber mat, honeycomb and polyurethane foamed using polyol and isocyanate materials which were sprayed by robot that is interlocked foaming machine. For more lightweight and cost reduction this paper shows how to optimize GMPU process parameters that related to foaming condition, robot position and robot velocity for polyurethane weight. The results show that flexural strength and modulus of board's specimens were evaluated by robot velocity and moving pattern. Based on that, a innovative process was developed for more lightweight and cost reduction.

Control System of Roadway Sign Painting Robot (노면사인 도색로봇 시스템의 제어 알고리즘)

  • 신현호;이우창;유지훈;홍대희;최우천;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1723-1726
    • /
    • 2003
  • Clean and well maintained roadway signs are important for preserving driver's safety. The existing signs on the roadway must be periodically re-painted in order to maintain clean state. However, current sign painting operations are manually performed now. These are very slow and workers are exposed to very dangerous and hazard working environment. In this paper, we present the method for automating this job with gantry robot and spray system. In addition, we suggest two design concepts to resolve the problem that it is impractical to make the gantry system so big as to cover whole lane width. In order to show the validity of this system, the painting operation is simulated and experimentally executed.

  • PDF

Gantry Robot with Extended Workspace for Pavement Sign Painting Operations

  • Hong Daehie;Lee Woo-Chang;Chu Baeksuk;Kim Tae-Hyung;Choi Woo Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1268-1279
    • /
    • 2005
  • The current method for pavement sign marking operations is labor-intensive and very dangerous due to the exposure of workers to passing traffic. It also requires blocking traffic for a long period of time resulting serious traffic jam. This paper deals with the development of a robotic system for automating the pavement sign painting operations. The robotic system consists of gantry frame equipped with transverse drive rail and automatic paint spray system. The workspace of the gantry robot is extended to one-lane width with the transverse rail system. This research also includes the development of font data structures that contain the shape information of pavement signs, such as Korean letters, English letters and symbols. The robot path is generated with this font data through the procedures of scaling up/down and partitioning the signs to be painted depending on the workspace size.

Development of Coating Robot Automation System Based on OLP for Radiators in PPS (페키지형 발전시스템용 라디에이터의 OLP 기반 코팅로봇 자동화시스템 개발)

  • Kim, Seon-Jin;Lee, Jong-Hwan;Lho, Tae-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.585-591
    • /
    • 2013
  • A robot automation system for coating uniformly a big radiator used in PPS(Packaged Power Station), which consists of 6-axis robot with spray gun, travelling vehicle, supply device of coating paint and thinner with pressured air, HMI controller and robot path OLP(Off-Line Programming), was developed. Experimental results on an optimum operation condition show that a coating thickness is $43{\mu}m$, which is satisfied to a design reference of $25-100{\mu}m$. A productivity of the developed coating robot automation system based on OLP is about 12.6 times of that of manual operation.