• Title/Summary/Keyword: Robot foot

Search Result 143, Processing Time 0.029 seconds

Development of Humanoid Robot's Intelligent Foot with Six-axis Force/Moment Sensors (6축 힘/모멘트센서를 가진 인간형 로봇의 지능형 발 개발)

  • Kim, Gab-Soon;Kim, Hyeon-Min;Yoon, Jung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.96-103
    • /
    • 2009
  • This paper describes a humanoid robot's intelligent foot with two six-axis force/moment sensors. The developed humanoid robots didn't get the intelligent feet for walking on uneven surface safely. In order to walk on uneven surface safely, the robot should measure the reaction forces and moments applied on the sales of the feet, and they should be controlled with the measured the forces and moments. In this paper, an intelligent foot for a humanoid robot was developed. First, the body of foot was designed to be rotated the toe and the heel to all directions, second, the six-axis force/moment sensors were manufactured, third, the high-speed controller was manufactured using DSP(digital signal processor), fourth, the humanoid robot's intelligent foot was manufactured using the body of foot, two six-axis force/moment sensors and the high-speed controller, finally, the characteristic test of the intelligent foot was carried out. It is thought that the foot could be used for a humanoid robot.

Design of a Flexible Robot Foot with Toes and Heel Joints (발가락과 뒤꿈치 조인트를 갖는 유연한 로봇 발 설계)

  • Park, Jin-Hee;Kim, Hyun-Sul;Kwon, Sang-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.446-454
    • /
    • 2011
  • In terms of the anatomy and mechanics of the human foot, a flexible robot foot with toes and heel joints is designed for a bipedal walking robot. We suggest three design considerations in determining foot design parameters which are critical for walking stability. Those include the position of the frontal toe, the stiffness of toes and heels, and the position of the ankle joint. Compared with the conventional foot with flat sale, the proposed foot is advantageous for human-like walking due to the inherent structural flexibility and the reasonable parameter values. Simulation results are provided to determine the design parameters and also show that the proposed foot enables smaller energy consumption.

Development of Force Sensors of Toes and Heel for Humanoid Robot's Intelligent Foot (인간형 로봇의 지능형 발의 발가락 및 뒤꿈치 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.61-68
    • /
    • 2010
  • In order to let the humanoid robot walk on the uneven terrains, the robot's foot should have the similar structure and function as human's. The intelligent foot should be made up of toes and heel. When it walks on the uneven terrains, the foot's sole senses the force and adjusts foot's position before robot losing his balance. In this paper, the force sensors of robot's intelligent foot for having the similar structure and function like human are developed. The heel 3-axis force/moment sensor and toe force sensors for humanoid robot's intelligent foot is developed, and the characteristic tests of them are carried out. As a result of characteristic test, the interference error of the heel 3-axis force/moment sensor is less than 2.2%. It is thought that the developed force sensors could be used to measure the reaction forces which is applied the toes and the heel of a humanoid robot.

3D Simulation Study of Biped Robot Balance Using FPE Method (FPE 방식을 활용한 이족 로봇 균형 유지 3차원 시뮬레이션 연구)

  • Jang, Tae-ho;Kim, Youngshik;Ryu, Bong-Jo
    • Journal of Digital Contents Society
    • /
    • v.19 no.4
    • /
    • pp.815-819
    • /
    • 2018
  • In this study, we investigate balance of a biped robot applying Foot Placement Estimator (FPE) in simulation. FPE method is used to determine a stable foot location for balancing the biped robot when an initial orientation of the robot body is statically unstable. In this case, the 6-DOF biped robot with point foot is modelled considering contact and friction between foot and the ground. For simulation, the mass of the robot is 1 kg assuming the center of robot mass (COM) is located at the center of the robot body. The height from the ground to the COM is 1 m. Robot balance is achieved applying stable foot locations calculated from FPE method using linear and angular velocities, and the height of the COM. The initially unstable angular postures, $5^{\circ}$ and $-5^{\circ}$, of the robot body are simulated. Simulation results confirm that the FPE method provides stable balance of the robot for all given unstable initial conditions.

Landing Performance of a Quadruped Robot Foot Having Parallel Linked Toes on Uneven Surface (평행링크형 발가락을 갖는 4족 보행로봇 발의 비평탄 지면 착지 성능)

  • Hong, Yeh-Sun;Yoon, Seung-Hyeon;Kim, Min-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.10
    • /
    • pp.47-55
    • /
    • 2009
  • In this study, a robot foot having toes for firm stepping on uneven surface is proposed. The toes are connected to the lower leg by parallel links so that the lower leg can rotate in the rolling and pitching directions during stance phase without ankle joint. The landing performance of the foot on uneven surface was evaluated by relative comparison with that of the most common foot making point contact with the walking surface, since the test conditions considering real uneven surface could be hardly defined for its objective evaluation. Anti-slip margin(ASM) was defined in this study to express the slip resistance of a robot foot when it lands on a projection with half circular-, triangular- or rectangular cross section, assuming that uneven surface consists of projections having these kind of cross sections in different sizes. Based on the ASM analysis, the slip conditions for the two feet were experimentally confirmed. The results showed that the slip resistance of the new foot is not only higher than that of the conventional point contact type foot but also less sensitive to the surface friction coefficient.

Predictive Control of an Efficient Human Following Robot Using Kinect Sensor (Kinect 센서를 이용한 효율적인 사람 추종 로봇의 예측 제어)

  • Heo, Shin-Nyeong;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.957-963
    • /
    • 2014
  • This paper proposes a predictive control for an efficient human following robot using Kinect sensor. Especially, this research is focused on detecting of foot-end-point and foot-vector instead of human body which can be occluded easily by the obstacles. Recognition of the foot-end-point by the Kinect sensor is reliable since the two feet images can be utilized, which increases the detection possibility of the human motion. Depth image features and a decision tree have been utilized to estimate the foot end-point precisely. A tracking point average algorithm is also adopted in this research to estimate the location of foot accurately. Using the continuous locations of foot, the human motion trajectory is estimated to guide the mobile robot along a smooth path to the human. It is verified through the experiments that detecting foot-end-point is more reliable and efficient than detecting the human body. Finally, the tracking performance of the mobile robot is demonstrated with a human motion along an 'L' shape course.

Design and performance test of a foot for a jointed leg type quadrupedal walking robot (관절형 4족 보행로봇용 발의 설계 및 성능시험)

  • Hong, Ye-Seon;Yi, Su-Yeong;Ryu, Si-Bok;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1250-1258
    • /
    • 1997
  • This paper reports on the development of a new foot for a quadrupedal jointed-leg type walking robot. The foot has 2 toes, one at the front and the other at the rear side, for stable landing on uneven ground by point contact. The toes can move up and down independantly, guided by double-wishbone shaped parallel links which enable the lower leg to rotate with respect to a remote center on the ground surface. The motion of each toe is damped by a hydropneumatic shock absorber integrated in the foot in order to absorb the dynamic landing shock. Furthermore, the new foot can reduce the maximum hip joint drive torque by shortening the moment arm length between the hip joint and the landing force vector on the ground. Intensive experiments were carried out in this study by using a one-leg walking model to investigate the soft landing performance of the foot which could be hardly offered by conventional robot feet such as a flat plate with a gimbal type ankle joint. And it was confirmed that the hip joint torque of the leg walking on the flat surface could be reduced remarkably by using the new foot.

Gait Programming of Quadruped Bionic Robot

  • Li, Mingying;Jia, Chengbiao;Lee, Eung-Joo;Feng, Yiran
    • Journal of Multimedia Information System
    • /
    • v.8 no.2
    • /
    • pp.121-130
    • /
    • 2021
  • Foot bionic robot could be supported and towed through a series of discrete footholds and be adapted to rugged terrain through attitude adjustment. The vibration isolation of the robot could decouple the fuselage from foot-end trajectories, thus, the robot walked smoothly even if in a significant terrain. The gait programming and foot end trajectory algorithm were simulated. The quadruped robot of parallel five linkages with eight degrees of freedom were tested. The kinematics model of the robot was established by setting the corresponding coordinate system. The forward and inverse kinematics of both supporting and swinging legs were analyzed, and the angle function of single leg driving joint was obtained. The trajectory planning of both supporting and swinging phases was carried out, based on the control strategy of compound cycloid foot-end trajectory planning algorithm with zero impact. The single leg was simulated in Matlab with the established kinematic model. Finally, the walking mode of the robot was studied according to bionics principles. The diagonal gait was simulated and verified through the foot-end trajectory and the kinematics.

얀센 메커니즘을 적용한 보행 로봇 다리의 운동학 해석

  • Kim, Yeong-Du;Bang, Jeong-Hyeon
    • CDE review
    • /
    • v.22 no.2
    • /
    • pp.6-10
    • /
    • 2016
  • This paper presents the kinematics of a walking robot leg based on Jansen mechanism. By using simple mathematics, all trajectories of walking robot leg links can be calculated. A foot point trajectory is used to evaluate the performance of a walking robot leg. Trial and Error method is used to find a best combination of link lengths under certain restrictions. All simulations are performed by Matlab. Ground score, drag score, step size, foot lift, instant speed, and average speed of foot point trajectories are used for selecting the best one.

  • PDF

An Efficient Foot-Force Distribution Algorithm for Straight-Line Walking of Quadruped Robots with a Failed Leg (고장 난 다리가 있는 사족 보행 로봇의 평탄 직선보행을 위한 효율적인 다리 힘 배분 알고리즘)

  • Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.896-901
    • /
    • 2008
  • This paper addresses the foot force distribution problem for quadruped robots with a failed leg. The quadruped robot has fault-tolerant straight-line gaits with one leg in locked-joint failure, and has discontinuous motion with respect to the robot body. The proposed method is operated in two folds. When the robot body stands still, we use the feature that there are always three supporting legs, and by incorporating the theory of zero-interaction force, we calculate the foot forces analytically without resort to any optimization technique. When the robot body moves, the conventional pseudo-inverse algorithm is applied to obtain the foot forces for supporting legs. Simulation results show the validity of the proposed scheme.