• Title/Summary/Keyword: Robot localization

Search Result 583, Processing Time 0.032 seconds

A Sonar-based Position Estimation Algorithm for Localization of Mobile Robots (초음파 센서를 이용한 이동로봇의 자기위치 파악 알고리즘)

  • Joe, Woong-Yeol;Oh, Sang-Rok;Yu, Bum-Jae;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.159-162
    • /
    • 2002
  • This paper presents a modified localization scheme of a mobile robot. When it navigates, the position error of a robot is increased and doesn't go to a goal point where the robot intends to go at the beginning. The objective of localization is to estimate the position of a robot precisely. Many algorithms were developed and still are being researched for localization of a mobile robot at present. Among them, a localization algorithm named continuous localization proposed by Schultz has some merits on real-time navigation and is easy to be implemented compared to other localization schemes. Continuous Localization (CL) is based on map-matching algorithm with global and local maps using only ultrasonic sensors for making grid maps. However, CL has some problems in the process of searching the best-scored-map, when it is applied to a mobile robot. We here propose fast and powerful map-matching algorithm for localization of a mobile robot by experiments.

  • PDF

A Precise Localization Method for a High Speed Mobile Robot using iGS and Dual Compass (iGS와 듀얼 컴퍼스를 이용한 고속 이동로봇의 정밀 위치 인식기법)

  • Jang, Won-Seok;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1182-1188
    • /
    • 2010
  • This paper proposes a precise localization algorithm for a quickly moving mobile robot. In order to localize a mobile robot with active beacon sensors, a relatively long time is needed, since the distance to the beacon is measured using the flight time of the ultrasonic signal. The measurement time does not cause a high error rate when the mobile robot moves slowly. However, with an increase of the mobile robot's speed, the localization error becomes too high to use for accurate mobile robot navigation. Therefore, in this research into high speed mobile robot operations, instead of using two active beacons for localization an active beacon and dual compass are utilized to localize the mobile robot. This new approach resolves the high localization error caused by the speed of the mobile robot. The performance of the precise localization algorithm was verified by comparing it to the conventional method through real-world experiments.

Robust Multidimensional Scaling for Multi-robot Localization (멀티로봇 위치 인식을 위한 강화 다차원 척도법)

  • Je, Hong-Mo;Kim, Dai-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.117-122
    • /
    • 2008
  • This paper presents a multi-robot localization based on multidimensional scaling (MDS) in spite of the existence of incomplete and noisy data. While the traditional algorithms for MDS work on the full-rank distance matrix, there might be many missing data in the real world due to occlusions. Moreover, it has no considerations to dealing with the uncertainty due to noisy observations. We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nystr$\ddot{o}$m approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).

  • PDF

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures

  • Seo, Dae-Sung;Won, Dae-Heui;Yang, Gwang-Woong;Choi, Moo-Sung;Kwon, Sang-Ju;Park, Joon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1797-1801
    • /
    • 2005
  • SLAM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important issues in mobile robot research. Until now expensive sensors like a laser sensor have been used for the mobile robot's localization. Currently, as the RFID reader devices like antennas and RFID tags become increasingly smaller and cheaper, the proliferation of RFID technology is advancing rapidly. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used to identify the mobile robot's location on the smart floor. We discuss a number of challenges related to this approach, such as RFID tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, because the reader just can senses whether a RFID tag is in its sensing area, the localization error occurs as much as the sensing area of the RFID reader. And, until now, there is no study to estimate the pose of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. We use the Markov localization algorithm to reduce the location(X,Y) error and the Kalman Filter algorithm to estimate the pose(q) of a mobile robot. We applied these algorithms in our experiment with our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors like odometers and RFID tags for the mobile robot's localization on the smart floor.

  • PDF

Multi-Robot Localization based on Bayesian Multidimensional Scaling

  • Je, Hong-Mo;Kim, Dai-Jin
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.357-361
    • /
    • 2007
  • This paper presents a multi-robot localization based on Bayesian Multidimensional Scaling (BMDS). We propose a robust MDS to handle both the incomplete and noisy data, which is applied to solve the multi-robot localization problem. To deal with the incomplete data, we use the Nystr${\ddot{o}}$m approximation which approximates the full distance matrix. To deal with the uncertainty, we formulate a Bayesian framework for MDS which finds the posterior of coordinates of objects by means of statistical inference. We not only verify the performance of MDS-based multi-robot localization by computer simulations, but also implement a real world localization of multi-robot team. Using extensive empirical results, we show that the accuracy of the proposed method is almost similar to that of Monte Carlo Localization(MCL).

  • PDF

Localization for Mobile Robot Navigation using Color Patches Installed on the Ceiling (천정 부착 칼라 패치 배열을 이용한 이동로봇의 자기위치 인식)

  • Wang, Shi;Chen, Hong-Xin;Strzelecki, Michal;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.156-160
    • /
    • 2008
  • A localization system to estimate the position as well as movement direction of mobile robots is proposed in this paper. This system implements a camera fixed on a robot and color patches evenly distributed and mounted on the planar ceiling. Different permutations of patch colors code information about robot localization. Thus, extraction of color information from patch images leads to estimation of robot position. Additionally, simple geometric indicators are combined with patch colors to estimate robot's movement direction. Since only the distribution of patch colors has to be known, the analysis of patch images to is relatively fast and simple. The proposed robot localization system has been successfully tested for navigation of sample mobile robot. Obtained test results indicate the robustness and reliability of proposed technique for robot navigation.

A Real-time Localization System Based on IR Landmark for Mobile Robot in Indoor Environment (이동로봇을 위한 IR 랜드마크 기반의 실시간 실내 측위 시스템)

  • Lee, Jae-Y.;Chae, Hee-Sung;Yu, Won-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.868-875
    • /
    • 2006
  • The localization is one of the most important issues for mobile robot. This paper describes a novel localization system for the development of a location sensing network. The system comprises wirelessly controlled infrared landmarks and an image sensor which detects the pixel positions of infrared sources. The proposed localization system can operate irrespective of the illumination condition in the indoor environment. We describe the operating principles of the developed localization system and report the performance for mobile robot localization and navigation. The advantage of the developed system lies in its robustness and low cost to obtain location information as well as simplicity of deployment to build a robot location sensing network. Experimental results show that the developed system outperforms the state-of-the-art localization methods.

Localization of a High-speed Mobile Robot Using Ultrasonic/RF Sensor and Global Features (RF/초음파센서와 이동특성에 기반한 고속 이동로봇의 위치추정기법)

  • Lee, Soo-Sung;Choi, Mun-Gyu;Park, Jae-Hyun;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.734-741
    • /
    • 2009
  • A new localization algorithm is proposed for a fast moving mobile robot, which utilizes only one beacon and the global features of the differential-driving mobile robot. It takes a relatively long time to localize a mobile robot with active beacon sensors since the distance to the beacon is measured by the traveling time of the ultrasonic signal. When the mobile robot is moving slowly the measurement time does not yield a high error. At a higher mobile robot speed, however, the localization error becomes too large to locate the mobile robot. Therefore, in high-speed mobile robot operations, instead of using two or more active beacons for localization, only one active beacon and the global features of the mobile robot are used to localize the mobile robot in this research. The two global features are the radius and center of the rotational motion for the differential-driving mobile robot which generally describe motion of the mobile robot and are used for the trace prediction of the mobile robot. In high speed operations the localizer finds an intersection point of this predicted trace and a circle which is centered at the beacon and has the radius of the distance between the mobile robot and the beacon. This new approach resolves the large localization error caused by the high speed of the mobile robot. The performance of the new localization algorithm has been verified through the experiments with a high-speed mobile robot.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures (RFID Tag 기반 이동 로봇의 위치 인식을 위한 확률적 접근)

  • Won Dae-Heui;Yang Gwang-Woong;Choi Moo-Sung;Park Sang-Deok;Lee Ho-Gil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1034-1039
    • /
    • 2005
  • SALM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important tasks in mobile robot research. Until now expensive sensors such as a laser sensor have been used for mobile robot localization. Currently, the proliferation of RFID technology is advancing rapidly, while RFID reader devices, antennas and tags are becoming increasingly smaller and cheaper. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying location of the mobile robot in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, the localization error results from the sensing area of the RFID reader, because the reader just knows whether the tag is in the sensing range of the sensor and, until now, there is no study to estimate the heading of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. The Markov localization method is used to reduce the location(X,Y) error and the Kalman Filter method is used to estimate the heading($\theta$) of mobile robot. The algorithms which are based on Markov localization require high computing power, so we suggest fast Markov localization algorithm. Finally we applied these algorithms our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors such as odometers and RFID tags for mobile robot localization in the smart floor

  • PDF