• Title/Summary/Keyword: Robotics and autonomous systems

Search Result 455, Processing Time 0.05 seconds

The Research of Unmanned Autonomous Navigation's Map Matching using Vehicle Model and LIDAR (차량 모델 및 LIDAR를 이용한 맵 매칭 기반의 야지환경에 강인한 무인 자율주행 기술 연구)

  • Park, Jae-Ung;Kim, Jae-Hwan;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.451-459
    • /
    • 2011
  • Fundamentally, there are 5 systems are needed for autonomous navigation of unmanned ground vehicle: Localization, environment perception, path planning, motion planning and vehicle control. Path planning and motion planning are accomplished based on result of the environment perception process. Thus, high reliability of localization and the environment perception will be a criterion that makes a judgment overall autonomous navigation. In this paper, via map matching using vehicle dynamic model and LIDAR sensors, replace high price localization system to new one, and have researched an algorithm that lead to robust autonomous navigation. Finally, all results are verified via actual unmanned ground vehicle tests.

Optimization of Distributed Autonomous Robotic Systems Based on Artificial Immune Systems

  • Hwang, Chul-Min;Park, Chang-Hyun;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.220-223
    • /
    • 2003
  • In this paper, we optimize distributed autonomous robotic system based on artificial immune system. Immune system has B-cell and T-cell that are two major types of lymphocytes. B-cells take part in humoral responses that secrete antibodies and T-cells take part in cellular responses that stimulate or suppress cells connected to the immune system. They have communicating network equation, which have many parameters. The distributed autonomous robotics system based on this artificial immune system is modeled on the B-cells and T-cells system. So performance of system is influenced by parameters of immune network equation. We can improve performance of Distributed autonomous robotics system based on artificial immune system.

  • PDF

Development of a Smartphone Controlled Personal Mobility System (PMS) with Semi-autonomous Navigation (스마트폰 제어기반의 반자율 네비게이션을 갖춘 개인용 이동 시스템 구현)

  • Kim, Yeongyun;Kim, Dong Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.97-103
    • /
    • 2016
  • In this paper, a smartphone-controlled personal mobility system (PMS) with semi-autonomous navigation is developed. The proposed PMS moves to waypoints and then reaches the destination where the waypoints and destination are selected by the user using Google maps in a smartphone. The hardware environment consists of a GPS (Global Positioning System) in the smartphone and a compass sensor. In addtion, while it is moving in autonomous mode, the user can intervene and change the direction and speed of the PMS in order to avoid obstacles that may be encountered accidentally in a dynamic environment. That is why it is called "semi-autonomous navigation". Experimental results showed that the proposed PMS is effectively able to migrate to the waypoints and destination in both autonomous and manual modes.

A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle (실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법)

  • Joo, Sang-Hyun;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

Autonomous Ground Vehicle Technologies Applied to the DARPA Grand Challenge

  • CraneIII, Carl D.;Armstrong Jr., David G.;Torrie, Mel W.;Gray, Sarah A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1126-1130
    • /
    • 2004
  • This paper describes the design, development, and performance testing of an autonomous ground vehicle that was developed to participate in the DARPA Grand Challenge that was held in March 2004. The authors of this paper are members of Team CIMAR which was one of twenty five teams selected by DARPA to participate in a competition to develop an autonomous vehicle that can navigate from near Los Angeles to near Las Vegas at speeds averaging twenty miles per hour. Most of the event was held on open terrain and trails in a rocky desert environment. This paper describes the overall system design and the performance of the system at the event.

  • PDF

All kinds of singularity avoidance in redundant manipulators for autonomous manipulation

  • Kim, Jin-Hyun;Marani, Giacomo;Chung, Wan-Kyun;Yuh, Jun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1587-1592
    • /
    • 2003
  • There are three kinds of singularity in controlling redundant manipulators. Kinematic, algorithmic and representation singularities are those. If manipulators fall into any singularity without proper action to avoid it, the control system must go away from our desire, and we can meet a dangerous situation. Hence, we have to deal the singularities very carefully. In this paper, we describe an on-line solution for avoiding the occurrence of both algorithmic and kinematic singularities in task-priority based kinematic controllers of robotic manipulators. Representation singularity can be easily avoided by using proper representation algorithm, so, in this paper, we only consider kinematic and algorithmic singularities. The proposed approach uses a desired task reconstruction and a successive task projection in order to maintain the measure for singularity over a user defined minimum value. It shows a gain in performance and a better task error especially when working in proximity of singular configurations. It is particularly suitable for autonomous systems where an off-line trajectory control scheme is often not applicable. The advantage and performance of the proposed controller is verified by simulation works. And, the experiment with real manipulator is remaining for the future works.

  • PDF

Nominal Trajectories of an Autonomous Under-actuated Airship

  • Bestaoui Yasmina
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.395-404
    • /
    • 2006
  • The objective of this paper is to generate a desired flight path to be followed by an autonomous airship. The space is supposed without obstacles. As there are six degrees of freedom and only three inputs for the LSC AS200 airship, three equality constraints appear due to the under-actuation.

A Paraconsistent Robot

  • Almeida Prado, Jose Pacheco
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.92.2-92
    • /
    • 2002
  • Building autonomous robots have been a central objective of research in artificial intelligence. The development of techniques for autonomous navigation in real environment consist one of the main tendencies of the current researches about Robotics. An important problem in autonomous navigation is the necessity of dealing with a great amount of uncertainties inherent to the real environments. The paraconsistent logic has characteristics that make it become an adequate tool to solve this problem. In this work, it is proposed a technique of mapping the real world in the navigation of an autonomous robot using the paraconsistent logic.

  • PDF

Sensor Network System to Operate Multiple Autonomous Transport Platform (다수의 무인운송플랫폼 운용을 위한 센서 네트워크 시스템)

  • Nam, Choon-Sung;Gim, Su-Hyeon;Lee, Suk-Han;Shin, Dong-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.706-712
    • /
    • 2012
  • This paper presents a sensor network and operation for multiple autonomous navigation platform and transport service. Multiple platform navigate with inside sensors and outside sensors while acquiring and process some useful information. Each platform communicates each other by navigational information through central main server. Efficient sensor network systems are considered for the scenario which some passengers call the service and the vehicle accomplish its transport service by transporting each caller to the destination by autonomous manners. In the scenario, all vehicles perform a role of sensor system to the central server and the server handles each information and integrate with faster procedure in the wireless 3G network.