• Title/Summary/Keyword: Rocket nozzle

Search Result 334, Processing Time 0.026 seconds

Effect of Nozzle Initial and Exit Wall Angles on Supersonic Flow Field in a Thrust Optimized Nozzle (추력이 최적화된 노즐의 초음속 유동에 대한 노즐벽 초기 및 출구각도의 영향)

  • Jeon, Tae Jun;Park, Tae Seon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.1-13
    • /
    • 2021
  • Effects of the nozzle wall angles on the supersonic flow field in a thrust optimized nozzle were numerically investigated. The combustor and operating condition of 30-tonf rocket engine was selected to study the optimum nozzle shape. The nozzle flow of combustion products was realized by the shifting equilibrium calculation for the propellant of kerosene-LOx. The change of nozzle wall angles induced different developing patterns of the internal and secondary shock wave. The optimum nozzle was obtained when the internal shock was in a specific position at the nozzle outlet. The nozzle wall angles of the optimum nozzle were very similar to those of the optimum nozzle which does not consider the shock wave.

Perspectives on the Hot Components for Rocket Nozzle and Thrusters (고성능 로켓노즐 및 추력기용 내열부품 현황)

  • Lim, Seong-Taek;Kim, Jung-Keun;Kang, Yun-Koo;Kim, Hyeong-Won;Kim, Yeon-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.67-71
    • /
    • 2008
  • Rocket nozzle components and thrusters for next-generation solid rocket with variable thrust, and small uncooled liquid rocket thrusters are required to withstand ultra-high temperature upto $2500^{\circ}C$. In this survey, the operationg environments are investigated with the suggeations of proper materials and their fabrication methods. Especially, It is suggested that Rhenium and other competative matrials are exploited to $2500^{\circ}C$ hot components, and thus needed to be developed.

  • PDF

The Studies on the Design of a Subscale Solid Propellant Rocket Motor (축소 모사형 고체 추진기관 설계에 관한 연구)

  • Kim, Hyung-Won;Oh, Jong-Yun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.215-218
    • /
    • 2009
  • A design of a subscale solid propellant rocket motor was conducted to do the similitude experiments for the large scale rocket motor. One of the main factor to subscale was the mach number of the solid propellant flume through a nozzle exit The analysis of the flume flow was done to obtain the mach number for the large and subscale rocket motor. The flume shapes on the non dimensional axises by the nozzle exit diameter was matched each other. The propellant grain of a subscale solid rocket motor was designed by the profile of pressure vs time obtained by the mach number of the flume shape. Some analyses of the theoretical solution were compared with the results of the ground static test.

  • PDF

A Study on Performance Change of Solid Rocket Motor for Variation of Nozzle Ambient Pressure (노즐 외기 압력 변화에 따른 고체추진기관 성능 변화 연구)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.219-222
    • /
    • 2007
  • This research on 2nd stage solid rocket motor of KSLV-I for performance change was carried out. Solid rocket motor shall ignite on altitude of 300km. Solid Rocket Motor performed Static Firing Test and High Altitude Test for motor performance. A study made an analysis of specific impulse variation for nozzle ambient pressure.

  • PDF

Coupled Analysis of Structure and Surface Ablation in Solid Rocket Nozzle (삭마반응을 고려한 고체 추진기관 노즐 조립체의 열반응 및 구조해석)

  • Kim, Yun-Chul;Doh, Young-Dae;Hahm, Hee-Cheol;Moon, Soon-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.565-569
    • /
    • 2011
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermo-structural analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem are solved by remeshing-rezoning method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code.

  • PDF

Performance Analysis of Soild Rocket Motor according to the Ratio of Nozzle Expansion (노즐 확장비에 따른 고체추진기관 성능해석)

  • Shin, Dong-Ill;Hwang, Hyung-No;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.320-323
    • /
    • 2009
  • There is many considerations of the composition development of propellant, performance analysis according to temperature, ablation condition of heat-resistant material, etc. in the solid rocket motor development process. Performance analysis of the motor according to nozzle expansion ratio is one of this process and an important factor to decide the motor performance. A Study is verified through anlaysis, motor manufacture and test.

  • PDF

Visualization of Vortex Tube near Submerged Nozzle in Simulator of Solid Rocket Motor (고체로켓 모사장치 내삽노즐 주위의 와류튜브 가시화)

  • Kim, Dohun;Shin, Bongki;Son, Min;Koo, Jaye;Kang, Moonjung;Chang, Hongbeen
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.34-40
    • /
    • 2013
  • A flow visualization near submerged nozzle of solid rocket motor was conducted by experiments. A numerical simulation was also performed to reveal detailed phenomena. Radial cold flow simulating hot gas was introduced by a porous grain model which was manufactured by perforated steel plates. The grain model was mounted in high-pressure chamber which has quartz glass at the top of the grain model. From the high-speed images, a rotating vortex was observed and the two type of counter-rotating momentums were generated in numerical results. The rotating momentum was generated at the fin-slot grain because of unbalance between high-velocity flow from slots and low-velocity flow from fin-bases. As a result, roll torques can be produced by the rotating vortex tube.

High Speed Wind Tunnel Test on the Aerodynamic Load Characteristics of Rocket Nozzle (로켓 노즐 공력하중 특성에 대한 고속 풍동시험)

  • Ra, Seung-Ho;Ok, Ho-Nam;Kim, In-Sun;Choi, Seong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.35-40
    • /
    • 2004
  • The high-speed wind tunnel test of rocket model was performed to investigate the effect of skirt configuration on aerodynamic load characteristics of nozzle. Test parameters were the length and diffusing angle of skirt. Test results showed that the gimbals actuator power could be reduced to 1/10 of that without skirt. The normalized test result was proposed to be used as database for skirt design.

Investigation of Pintle Shape Effect on the Nozzle Performance (핀틀 형상이 노즐 성능에 미치는 영향에 관한 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.8
    • /
    • pp.790-796
    • /
    • 2008
  • Typical solid rocket motors have a fixed propellant grain shape and nozzle throat size resulting in a fixed motor thrust. Pintle nozzle has been suggested as a means of providing variable thrust while maintaining the inherent advantage of solid rocket motors. In this study, the pintle shape effect on nozzle performance is investigated using experimental-aided Computational Fluid Dynamics(CFD). The pintle shape is modified by a principle of monotony. CFD analysis is performed using Fluent by applying the turbulent model. This analysis indicates that nozzle thrust and pintle load are influenced by change of nozzle shock pattern and flow separation due to pintle shape and there exists a high-performing pintle shape.

A Study on Ablation Behavior of Graphite Nozzle using Liquid Rocket Engine (액체로켓엔진을 이용한 Graphite 노즐의 삭마 거동 연구)

  • Cho Nam Choon;Park Hee Ho;Keum Young Tag
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.119-122
    • /
    • 2005
  • Ablation phenomena is very complicated because it includes momentum, energy and mass transfer, chemical reactions as well as phase change. In this paper, ablation at the rocket nozzle throat is modeled as unsteady one dimensional axi-symmetric with proper boundary conditions and field equation is solved numerically. Analytical results are compared with measured ablation data from firing experimental liquid rocket engine. Test variables are combustion pressure and mixture ratio. for low combustion pressure and low mixture ratio, the discrepancy between analysis and experiments are large but for the normal rocket operation range, two results show a simliar trend with maximum discrepancy of $100\%$.

  • PDF