• Title/Summary/Keyword: Rod anchors

Search Result 6, Processing Time 0.022 seconds

Tensile Strength of Post-Installed High-Shear Ring Anchors (HRA) After Shear Loading (전단 하중을 경험한 후설치 고전단 링앵커의 인장 강도)

  • Jeon, Sang Hyeon;Chun, Sung-Chul;Kim, Jae Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.61-68
    • /
    • 2018
  • Tensile load tests were conducted on High-Shear Ring Anchors (HRAs) after shear load had been applied to the HRAs, which had been developed to reduce the number of the anchors. Test variables include the embedment length of the rod and the width of the specimens and a total of 12 specimens were tested. Test results show that the HRAs pulled out due to bond failure or steel failure occurred in case that the HRAs were installed to the members with 300mm or greater width and the embedment length of 160mm (the actual embedment of rod is 140mm) or deeper. Except 4 HRAs showing steel failure of rod, the minimum and average of test-to-prediction by ACI 318-14 ratios are 1.18 and 1.79, respectively. The tensile strength of HRAs, after shear load was applied to the HRAs, can be safely evaluated by the minimum among the concrete breakout strength and bond strength with the actual embedment length of the rod.

A Study on the Pull-out Strength of Bond Type Anchors (부착식 앵커의 인발강도에 관한 연구)

  • Seo, Seong Yeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.105-114
    • /
    • 2018
  • The use of post installed anchors with bond type has lately been increasing when it is necessary to repair, reinforce, or remodel structures. This method provides flexibility and simplicity for construction of structural members that require adhering or fixing. Meanwhile, strength evaluation of anchors with expansion type among post-installed anchors systems has nearly reached setting up stage like design code through continual experimental studies for the last ten years, but analyses or experimental studies on anchor system with bond type are not yet sufficient. Accordingly, the designers and builders of korea depend on foreign design codes since there are no exact domestic design code they could credit. In this study, the objectives are investigating the effects on pull-out strength of resin anchors embedded into plain concrete by pull-out experiment of resin anchors with variables such as anchor diameter, anchor interval, embedment depth and edge distance.

Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests (실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.5-15
    • /
    • 2009
  • This paper presents the results of full-scale uplift load tests performed on 24 passive anchors grouted to various lengths at Okchun and Changnyong site. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of 1~6 m. The majority of installations used D51 mm high grade steel rebar to induce rock failure prior to rod failure. However, a few installations included the use of D32 mm rebar at relatively deeper anchored depth so as to induce rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. In addition to field tests, laboratory pullout tests were conducted to determine bond strength and bond stress-shear slip relation at the tendon/grout interface when a corrosion protection sheath is installed in the cement-based grout. The test results show that the ultimate tendon-grout bond strength is measured from 18~25% of unconfined compressive strength of grout. One of the important results from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible.

Behavior of Bond-type Shallow Anchors in Rock Masses ( I ) - Metamorphic Rock (gneiss) at Taean Test Site - (암반에 근입된 부착형 앵커의 거동특성 (I) - 태안지역 편마암 -)

  • Kim, Dae-Hong;Lee, Dae-Soo;Chun, Byung-Sik;Kim, Byung-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.45-55
    • /
    • 2006
  • This paper presents the results of full-scale uplift load tests performed on 30 passive anchors grouted to various lengths at Taean site in Korea. Various rock types were tested, ranging from highly weathered to sound gneiss. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of $1{\sim}4m$. The majority of installations used SD4O-D51 no high grade steel rebar to induce rock failure prior to rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, and the strength of rebar. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined.

Shear Strength Evaluation on Multiple High-Shear Ring Anchors Using Shear Strength Model of a Single High-Shear Ring Anchor (단일 고전단 링앵커의 전단강도 모델을 이용한 다수 고전단 링앵커의 전단강도 평가)

  • Kim, Mun-Gil;Chun, Sung-Chul;Kim, Young-Ho;Sim, Hye-Jung;Bae, Min-Seo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.463-471
    • /
    • 2016
  • A shear strength model for the high-shear ring anchor consisting of a steel ring and a rod was developed based on the shear tests on single high-shear ring anchors. The shear strength was found to be proportional to $f_{ck}{^{0.75}}$ which is a similar characteristic to the strength of shear connectors used in composite structures. The effects of the compressive strength of concrete, edge distance, and embedment length of rod are included in the proposed model. Comparison with 22 tests shows that the average and the coefficient of variation of test-to-prediction ratios are 1.01 and 7.57%, respectively. Push tests on the specimens having four high-shear ring anchors at each face were conducted and the measured shear strengths were compared with the predictions by the proposed model. For the specimen with an edge distance of 100 mm, a splitting failure occurred and for the specimens with an edge distance of 150 mm, a failure mode mixed with splitting and bearing occurred, which were very similar to the failures of shear tests on single high-shear ring anchors. In case of a splitting failure, the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 400 mm which is four times of the edge distance. In case of a bearing failure, the failure area is less than 150 mm from the center of the anchor and therefore the overlap of failure surfaces could be prevented by providing the longitudinal spacing of 200 mm. The average of the test-to-prediction ratios of Push tests is 98%, which means that the proposed mode can be applied to predict the shear strength of the multiple high-shear rings.

Lateral Load Test on the Bar-type Anti-buoyancy Anchors in the Weathered Rock (풍화암에 시공된 Bar Type 부력앵커의 수평재하시험)

  • Park, Chan-Duk;Lee, Kyu-Hwan;Ryu, Nam-Jae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.165-174
    • /
    • 2004
  • This study is about a horizontal load test of buoyance anchor installed in the section where underground water level happens in the depth of 5m under the ground when the ground is excavated, because the section as a excavation section of high speed railway ${\bigcirc}{\bigcirc}$ station is near a rivers and because the section always has a reservoir of full water level on the left. Therefore, in this study we will appraise the long-term stability of the structure permanently being taken buoyance by the underground water level, through the spot test of the buoyance anchor installed in the section where underground water level happens. For that, Bar Type anchor is used, which can get enough pulling-out force by a method to resist buoyance by using friction force against the ground by high strength steel rod or steel wire. Anti-buoyance anchor is installed on the bottom slab of underground structure being taken horizontal force by the braking and accelerating of high speed train. And, It is aimed to analyze and grasp the review result of stability for the horizontal force that happens at the parking and stopping of high speed train, by executing horizontal load test for the grasping of the movements characteristic of buoyance anchor.