• Title/Summary/Keyword: Rose petal

Search Result 46, Processing Time 0.024 seconds

The Effects of Anti-Inflammatory Activities and Active Fractions Analysis of Ethanol Extract from Red Rose Petals (붉은 장미꽃잎 에탄올 추출물의 활성 분획물 분석 및 항염증 활성 효과)

  • Kim, Hyun Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.543-551
    • /
    • 2020
  • Red rose petals are usually disposed but they are an abundant source of phenolics and traditionally used as food supplement and as herbal medicine. Of the Various phenolics, they are known to have anticancer, antioxidant, and anti-inflammatory properties. In this study, we investigated the anti-inflammatory effects of red rose ethanolic extracts(GRP) on lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results demonstrated that pretreatment of GRP(500㎍/mL) significantly reduced NO production by suppressing iNOS protein expression in LPS-stimulated cells. Anti-inflammatory effects byred rose petal were observed in the following. Red rose petal inhibited the translocation of NF-κB from the cytosol to the nucleus via the suppression of IκB-α phosphorylation and also inhibited LPS-stimulated NF-κB transcriptional activity. These findings suggest that red rose petal exert anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of red rose petal. Therefore, red rose petal could be regarded as a potential source of natural anti-inflammatory agents.

Application of Fixatives to Freeze Dried Rose Petals

  • Jo, Myung-Hwan;Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1227-1233
    • /
    • 2008
  • The effect of freeze drying and fixatives in post-treating freeze drying on the morphological properties of the rose (Rosa hybrida L.) petal were investigated for the production of high quality of freeze dried rose. The morphology including form and color of the dried flowers of cut rose were depended on the drying methods. The drying time was extended due to their density and water content, and was shorter in the freeze drying than that in the natural and hot air drying. Freeze dried process for dried flowers took 2 days in a freeze dryer and did not cause shrinkage or toughening of rose petal being dried, preserving its natural shape and color. The diameter of freeze dried flowers showed little reduction compared to fresh flowers. In Hunter color values of petals of freeze dried flowers, L and a values were high and showed little variations in comparison to fresh petals. Freeze drying led to a noticeable increase in anthocyanin contents in petals, suggesting that anthocyanin contents play an important role in the acquisition of freezing tolerance. Exposure of flowers to freeze drying was accompanied by an increase in the carotenoid content. In the post-treating freeze drying, epoxy resin, a fixative, applied alone or in combination to petals of freeze dried flowers showed efficient coating for the protection from humidity and sunlight. Combined application of epoxy and acetone to freeze dried petals permitted maintenance of natural color and excellent tissue morphology, showing color stability and shiny texture in surface of petals. These findings suggest that application of fixatives to freeze dried rose petals improves the floral preservation and epoxy coating provides good quality in the freeze dried flower product.

Determination of Urea using Rose Tissue Sensor (장미조직센서를 이용한 요소의 정량)

  • Kim, Bong-Weon;Jeon, Young-Guk;Chung, Chin-Kap
    • Analytical Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.313-318
    • /
    • 1993
  • The rose petal tissue biosensor has been constructed by immobilizing New carina rose tissue. Optimum conditions for the determination of urea were investigated using this sensor. Selectivity and life time of this sensor were also obtained. As a result, the biosensor showed the optimum response characteristics in 0.20M phosphate buffer solution at pH 8.0, $37^{\circ}C$ and 50mg of tissue amounts. This sensor was linear from $9.0{\times}10^{-5}$ to $4.0{\times}10^{-3}M$ urea with a slope of 42mV/decade. The limit of detection and response time are $7.0{\times}10^{-5}M$ and 17~19 min.

  • PDF

The Anti-Inflammatory and Anti-Oxidant Activity of Ethanol Extract from Red Rose Petals

  • Kim, Hyun-Kyoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.139-148
    • /
    • 2020
  • Red rose petals are usually disposed but they are an abundant source of phenolics and traditionally used as food supplement and as herbal medicine. Of the Various phenolics, they are known to have anticancer, antioxidant, and anti-inflammatory properties. In this study, we investigated the anti-inflammatory effects of red rose ethanolic extracts (GRP) on lipopolysaccharide (LPS)-activated RAW 264.7 cells. The results demonstrated that pretreatment of GRP (500㎍/mL) significantly reduced NO production by suppressing iNOS protein expression in LPS-stimulated cells. Anti-inflammatory effects by red rose petals were observed in the following. Red rose petals inhibited the translocation of NF-κB from the cytosol to the nucleus via the suppression of IκB-α phosphorylation and also inhibited LPS-stimulated NF-κB transcriptional activity. These findings suggest that red rose petals exert anti-inflammatory actions and help to elucidate the mechanisms underlying the potential therapeutic values of red rose petals. Therefore, red rose petals could be regarded as a potential source of natural anti-inflammatory agents.

Effects of Pretreatments of Surfactants, Germicides, Sucrose, or Hormones on the Vase Life of Cut Rose 'Red Sandra' (계면활성제, 살균제, 자당 및 호르몬 전처리가 절화장미(cv. Red Sandra) 수명에 미치는 영향)

  • Son, Ki-Cheol;Kim, Tae-Sik;Byoun, Hye-Jin;Chang, Myoung-Kap
    • Horticultural Science & Technology
    • /
    • v.16 no.4
    • /
    • pp.533-536
    • /
    • 1998
  • In order to develop a pretreatment solution for cut rose, the effects of surfactants [Tween 20, Triton X-100, polyoxyethylene 4 lauryl ether (PLE)], germicides (aluminum sulfate, $AgNO_3$, dichloroisocyanuric acid, STS, benzalkonium chloride, 8-hydroxyquinoline sulfate), sucrose, and hormones (ABA and kinetin) on the longevity and quality of 'Red Sandra' were investigated in environment-controlled room. Although 20 and 50 ppm Tween 20, and 500 ppm PLE appeared, in appearance, to be effective in retarding blueing and wilting, respectively, they didn't show statistical differences as compared to distilled water control. Among germicides, $AgNO_3$ was the most effective in delaying petal blueing, petal withering, and reduction of fresh weight, regardless of its concentration, while, in the case of STS, only 1mM treatment was effective in delaying of petal withering. Only 5% sucrose treatment delayed petal blueing, petal withering, and bent neck, but showed no significant difference as compared to 500 ppm aluminum sulfate. Finally, single or combination treatments of ABA and cytokinin were found to rather stimulate the senescence of cut rose.

  • PDF

Recent advances in development of commercial rose by molecular breeding (분자육종에 의한 장미 신품종 최근 개발 동향)

  • Oh, Myung-Jin;Kim, Jong-Hyun;Ahn, Myung-Suk;Liu, Jang-R.;Kim, Suk-Weon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.414-424
    • /
    • 2010
  • This report describes recent advances in tissue culture, genetic transformation of commercial rose (Rosa hybrida) and in development of new rose cultivars by molecular breeding. Rose is one of major cut-flowers in global horticulture industry. Successful progresses were made in development of new cultivars for pathogen resistant, environmental stress resistant and petal color modification by molecular breeding. New cultivars, however, has not reported yet in korea, although lots of progresses were achieved in each field of conventional breeding, tissue culture and genetic transformation. Cooperation in these research fields will promote screening of useful genes to have specific traits on rose and exploiting of processes to improve in the efficiency of tissue culture and genetic transformation of rose, therefore, we hopefully expect that new rose cultivars by molecular breeding will be released in the near future.

Enhancing the Antioxidant Activities of Wines by Addition of White Rose Extract

  • Seong, Hyunbin;Heo, Jieun;Lee, Kyun Hee;Lee, Yoon Bok;Kim, Yun Bae;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1602-1608
    • /
    • 2017
  • White rose petal extract (WRE) contains large amounts of phenolic compounds and is considered edible. In this study, red and white wines were prepared by the addition of WRE (0.10% or 0.25% (w/v)), followed by fermentation at $25^{\circ}C$ for 15 days. The fermentation profiles, colors, sensory test results, and antioxidant activities of the wines were compared. As reported herein, the fermentation profiles of the pH, $CO_2$ production rate, and final ethanol concentration were not affected by the addition of WRE, but a slow consumption rate of sugar was observed in 0.25% WRE-added wine. In contrast, the total polyphenol concentrations in WRE-added wines increased significantly (p < 0.05) in a dose-dependent manner, resulting in appreciable enhancement of the antioxidant activities of the wines. Chromaticity tests showed slight changes in the redness and yellowness, but sensory tests showed that the overall flavor qualities of the WRE-added wines were acceptable to the panels. This study demonstrates that addition of WRE to wine confers beneficial health effects and this treatment results in better outcome in white wine.

Characteristics Comparison of Mutants Induced through Gamma Irradiation in 'Kardinal' Rose (감마선 조사로 유기한 장미 '카디날' 돌연변이체의 특성 비교)

  • Koh, Gab-Cheon
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.456-460
    • /
    • 2011
  • This study was carried out to compare the pattern of mutant variation and to evaluate the characteristics of mutants obtained by gamma irradiation in rose 'Kardinal'. Forty four rooted cuttings of 'Kardinal' were irradiated at 70 Gy gamma-ray dose from a $^{60}Co$ source to induce mutants in 2002. The irradiated plants were planted in field, and observed spotting of petal color mutants from 2002 to 2004. Four different kinds of mutant twigs with each different color flower were obtained from the irradiated 'Kardinal' with red petal. After being identified to be a stable mutant from 2004 to 2008, each mutant line propagated by cutting was hydroponic-cultured to evaluate the characteristics in the greenhouse from 2008 to 2009. Four mutant lines obtained from 'Kardinal' with red petal (Red group, 44A, 45B) include KA1 with light pink petal (Red group, 55B-55D), KA2 with pink petal (Red group, 63A-63B), KA3 with deep pink (Red purple, N57A-N57C), and KA4 with orange red (Red group, 43A-43B). Diameters of each flower in four mutant lines were different from 'Kardinal'. The line KA1 was 9.5 cm wide, and it showed the smallest diameter when compared to other mutants. While the line KA2 was the largest one with 12.5 cm 'Kardinal'. Petal number per flower was also variable among the mutants. The line KA2 had 39.8 petals being the largest number among the mutants, while the line KA1 was the lowest one compared to 35.5 petals of 'Kardinal'. Petal color was measured by using colorimeter. Brightness (L) measured at each petal of four mutants increased more than 'Kardinal'. CIE Lab values, a and b decreased more than 'Kardinal' at the petal color of three mutants except the line KA4. Characteristics of shoot, leaf, etc. from four mutants were also different from the ones of 'Kardinal'. The line KA1 was shortest in shoot, node and peduncle length, and lowest in prickle number. The reverse side of leaves was reddish green color in 'Kardinal' as well as the line KA4, but green color in the line KA1, KA2, and KA3.

Induction of Petal Color Mutants through Gamma Ray Irradiation in Rooted Cuttings of Rose (장미 삽목묘의 감마선 처리에 의한 화색 돌연변이체 유기)

  • Koh, Gab-Cheon;Kim, Min-Za;Kang, Si-Yong
    • Horticultural Science & Technology
    • /
    • v.28 no.5
    • /
    • pp.796-801
    • /
    • 2010
  • This study was carried out to establish a system for mutation breeding by irradiation of gamma-ray in $Rosa$ $hybrida$ Hort. The rooted cuttings of two roses, 'Spidella' and 'Cabernet' were irradiated with different gamma-ray doses (0, 30, 50, 70, 90, 110, 130, 150 and 170 Gy) from a $^{60}Co$ source to reveal an optimal dose for induction of mutants. The irradiated plants were planted in a greenhouse, and investigated on the appearance of petal color mutants and shoot growth by gamma ray dose. The 50% lethal doses ($LD_{50}$) of plant were 110 Gy for 'Spidella' and 150 Gy for 'Cabernet', respectively. The 50% decrease dose of shoot length was observed at 70-90 Gy dose for 'Spidella', and 110 Gy dose for 'Cabernet'. Solid, chimeric and mosaic petal mutants with various colors were induced from pink petal of 'Spidella' and red petal of 'Cabernet' when 30-170 Gy dose was irradiated. The mutants obtained from 'Spidella' had white, ivory, pinky ivory, light pink and deep pink petal colors. The mutants obtained from 'Cabernet' had pink, deep pink, purple red (magenta), orange red and purple petal colors. It was suitable to irradiate 70-90 Gy dose for 'Spidella' and 90-110 Gy dose for 'Cabernet' for the induction of various mutants considering plant survival rate, shoot growth and mutant occurrence rate.

Plant Tissue Sensor for Determination of Cytidine (시티딘 정량을 위한 식물조직 센서)

  • Gwon Shik Ihn;Chin Kap Chung;Bong Weon Kim;Young Guk Jeon
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.218-222
    • /
    • 1992
  • Rose tissue containing cytidine deaminase converts cytidine to uridine and ammonia gas. Rose tissue sensor was constructed by immobilizing 50mg of a rose petal tissue on an NH3 gas sensor and the optimum condition of the sensor for the determination of cytidine was investigated. The tissue sensor showed a linear range of$7.0 {\times} 10^{-4}$$1.0{\times} 10^{-2}$M cytidine with a slope of 53 mV/decade in 0.2 M phosphate buffer, pH 8.4 at 37$^{\circ}C$. The detection limits were $3.0{\times}10^{-4}$ M and relative standard deviation was 3.4%. This sensor showed an excellent selectivity among various nucleosides and amino acids.

  • PDF