• Title/Summary/Keyword: Rotation performance

Search Result 1,233, Processing Time 0.025 seconds

Effect of connection rotation capacities on seismic performance of IMF systems

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.73-89
    • /
    • 2016
  • The seismic performance of moment frames could vary according to the rotation capacity of their connections. The minimum rotation capacity of moment connections for steel intermediate moment frames (IMF) was defined as 0.02 radian in AISC 341-10. This study evaluated the seismic performance of IMF frames with connections having a rotation capacity of 0.02 radian. For this purpose, thirty IMFs were designed according to current seismic design provisions considering different design parameters such as the number of stories, span length, and seismic design categories. The procedure specified in FEMA P695 was used for conducting seismic performance evaluation. It was observed that the rotation capacity of 0.02 radian could not guarantee the satisfactory seismic performance of IMFs. This study also conducted seismic performance evaluation for IMFs with connections having the rotation capacity of 3% and ductile connections for proposing the minimum rotation capacity of IMF connections.

Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - I. Performance Evaluation (접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - I 성능평가)

  • Moon, Ki Hoon;Han, Sang Whan;Ha, Seung Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2014
  • The current AISC341-10 standard specifiesa value of 0.02 radian for the minimum rotation capacity of connections for the intermediate steel moment frame system. However, despite of the advances realized in the domains of performance evaluation method and analysis method, research onthe minimum rotation capacity of the intermediate steel moment frame systemsatisfying the seismic performance has not been conducted in detail. In this study, the intermediate moment frame systemisdesigned with respect to current standards and the seismic performance in accordance with the rotational capacity of connections is evaluated using the seismic performance evaluation method presented in FEMA-P695. The minimum rotation capacity of intermediate steel moment frames required to satisfy seismic performance as well as the major design values affecting the seismic performance of moment frame areestimated. To that goal, the design parameters are selected and various target frames are designed. The analysis models of the main nonlinear elements are also developed for evaluating seismic performance. The resultsshow that the 20-story structure doesnot meet the seismic performance even if it satisfies the rotation capacity of 0.02 radian.

A Study of Implementing Efficient Rotation for ARX Lightweight Block Cipher on Low-level Microcontrollers (저사양 마이크로 컨트롤러에서 ARX 경량 암호를 위한 효율적인 Rotation 구현 방법 연구)

  • Kim, Minwoo;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.623-630
    • /
    • 2016
  • Heterogeneous IoT devices must satisfy a certain level of security for mutual connections and communications. However, a performance degradation of cryptographic algorithms in resource constrained devices is inevitable and so an optimization or efficient implementation method is necessary. In this paper, we study an efficient implementation method for rotation operations regarding registers for running ARX lightweight block ciphers. In a practical sense, we investigate the performance of modified rotation operations through experiments using real experiment devices. We show the improved performance of modified rotation operations and discover the significant difference in measured performance between simulations and real experiments, particularly for 16-bit MSP microcontrollers.

Seismic Performance of High-Rise Intermediate Steel Moment Frames according to Rotation Capacities of Moment Connections

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • The rotation capacity of the moment connections could significantly influence on the seismic performance of steel moment resisting frames. Current seismic provisions require that beam-to-column connections in Intermediate Moment Frames (IMF) should have a drift capacity as large as 0.02 radian. The objective of this study was to evaluate the effect of the rotation capacity of moment connections on the seismic performance of high-rise IMFs. For this purpose, thirty- and forty-story high-rise IMFs were designed according to the current seismic design provisions. The seismic performance of designed model frames was evaluated according to FEMA P695. This study showed that the forty-story IMF satisfied the seismic performance objective specified in FEMA P695 when the rotation capacity of the connections was larger than 0.02. However, thirty-story IMFs satisfied the performance objective when the connection rotation capacity is larger than 0.03.

The Roles of HR Practices in the Relationship between Demographic Cohesion and Firm Performance: Focusing on Job Rotation and Flexible Work Arrangement (인구통계적 응집성이 기업성과에 미치는 영향에서 HR 제도의 역할 탐구: 순환근무와 탄력근무를 중심으로)

  • Kwon, Insu;Lee, Ha-eun;Kim, Sang-Joon
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.4
    • /
    • pp.193-209
    • /
    • 2021
  • Purpose - The purpose of this study is to specify the relationship between demographic cohesion and firm performance by examining the roles of HR practices, such as job rotation and flexible work arrangement. Design/methodology/approach - This study samples 1,093 firms in Korea and collects their data between 2007 and 2017 from Workplace Panel Survey, a database from Korea Labor Institute. The demographic cohesion is measured using the Herphindal-Hershman index and the firm performance is measured with net incomes. This study employs a fixed-effects model for the estimation of firm performance with respect to demographic cohesion, job rotation, and flexible work arrangement. Findings - There is a positive relationship between demographic cohesion and net incomes. And the relationship is positively moderated by job rotation. However, flexible work arrangement shows a mixed moderation. Research implications or Originality - Differentiated from the studies on demographic diversity, this study shows that demographic cohesion has a mixed impact on firm performance. While demographic cohesion can improve firm performance through trust building, in-group favoritism, and collective identity it entails internal conflicts. However the link between demographic cohesion and firm performance is moderated by job rotation and flexible work arrangement. While there is a positive moderation of job rotation, there is a negative moderation of flexible work arrangement.

Bearing Performance Evaluation Based on Rigid Body Dynamic Analysis Considering Rotation and Loads Over Time (시간에 따른 회전 및 하중을 고려한 강체 동역학 해석에 기반한 베어링 성능 평가)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.35-42
    • /
    • 2023
  • Bearing is a mechanical component that supports loads and transmits rotation. As the application of high-value-added products such as semiconductors, aviation, and robots have recently become diverse and more precise, an accurate bearing performance prediction and evaluation technology is required. Bearing performance evaluation can be divided into evaluations based on bearing theory and on numerical analysis. An evaluation based on numerical analysis is a technique that has been highlighted because the problems that remained unsolved owing to time problems can be solved through recent developments in computers. However, current studies have the disadvantage of not considering the essential changes over time and bearing rotation. In this study, bearing performance evaluation based on rigid body dynamic analysis considering rotation and load over time is performed. Rigid body dynamic analysis is performed for deep groove ball bearing to calculate the load applied by the ball. The reliability of the analysis is verified by comparing it with the results calculated using bearing theory. In addition, rigid body dynamic analysis is performed for automotive wheel bearings to calculate the contact angle and load applied by the ball for cases where axial load and radial load are applied, respectively. The effect of rotation and load over time is evaluated from these results.

Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - II. Cause Evaluation and Alternative (접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - II 원인 평가 및 대안)

  • Moon, Ki Hoon;Han, Sang Whan;Ha, Seung Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.105-115
    • /
    • 2014
  • This paper is the sequel of a companion paper (I. Performance Evaluation) evaluating the relation between the seismic performance of steel intermediate moment frames (IMFs) and the rotation capacity of connections. The evaluation revealed that the seismic performance of IMFs having the required minimum rotation capacity suggested in the current standards did not meet the seismic performance criteria presented in FEMA 695. Therefore, thepresent study evaluates the causes of the vulnerable seismic performance for steel IMFs and proposes alternatives to satisfy the seismic performance suggested in FEMA 695. To that goal, the results of nonlinear analysis, which are the pushover analysis and the incremental dynamic analysis, are examined and evaluated. As a result, high-rise IMF systems are seen to have the lower collapse margin ratio after connection fracture than row-rise IMF systems and, the actual response isfound to compared tothedesign drift ratio acting on design load design. Finally, the minimum design load values are proposed to meet the seismic performance suggested in FEMA 695 for IMF systems having vulnerable seismic performance.

A Numerical Study on the Performance Evaluation of the Vacuum Pump for Waste Treatment (수치해석을 이용한 오물 처리용 진공펌프의 성능평가)

  • Lee, Him-Chan;Kim, Joon-Hyung;Yoon, Joon-Yong;Kim, Chang-Jo;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.53-58
    • /
    • 2014
  • Vacuum pump transfers waste that is pulverized by integrated macerator. For this reason, unlike ordinary pump systems, there is a rotating macerator ahead of impeller for pulverizing. It is hard to predict numerical solution because area of Inlet flow path changes according to the rotation angle of the integrated macerator. So, in this study, the verification of performance evaluation method of Marine vacuum pump were numerically studied by commercial ANSYS CFX 13.0 software. We select a model of performance evaluation for study, and we analyze change of inlet flow path of integrated macerator according to rotation angle. We generate 5 model sets according to rotation angle of the integrated macerator. And we evaluate their performance by numerical analysis. Then, we analyze internal flow field and performance according to rotation angle of the integrated macerator based on numerical analysis result. In addition, we compared with experimental data for validity of numerical result by using steady state analysis.

Design and Performance Improvement of a Digital Tomosynthesis System for Object-Detector Synchronous Rotation (물체-검출기 동기회전 방식의 X-선 단층영상시스템 설계 및 성능개선에 관한 연구)

  • Kang, Sung-Taek;Cho, Hyung-Suck;Roh, Byung-Ok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.471-480
    • /
    • 1999
  • This paper presents design and performance improvement of a new digital tomosynthesis (DTS) system for object-detector synchronous rotation. Firstly, a new DTS system, called OSDR (Object-Detector Synchronous Rotation) is suggested and designed to acquire X-ray digital images. Secondly, the shape distortion of DTS images generated by an image intensifier is modeled. And a new synthesis algorithm, which overcomes the limitations of the existing synthesis algorithm, is suggested to improve the sharpness of the synthesized image. Also an artifact analysis of the DTS system is performed. Thirdly, some performance indices, which evaluate quantitatively performance improvement, are defined. And the experimental verification of the performance improvement is accomplished by the ODSR system newly designed. The advantages of the ODSR system are expressed quantitatively, compared with an existing system.

  • PDF

Performance Evaluation of Rotational Flow of a 2×2 Microfluidic Centrifuge with varying Inlet Conditions and Chamber Sizes (마이크로 유체 원심분리기의 입구 조건과 챔버 크기에 따른 회전 유동 성능 평가)

  • Jeon, Hyeong Jin;Kwon, Bong Hyun;Kim, Dae Il;Kim, Hyung Hoon;Go, Jeung Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • This paper describes the measurement of performance evaluation of rotational flow varying chamber size and Reynolds number. Through the experimental visualization of the flow rotation, the number and position of flow rotation in the $2{\times}2$ microfluidic centrifuge were examined. At a chamber width of 250${\mu}m$, single flow rotation was obtained over at a Reynolds number of 300, while at a chamber width of 500 ${\mu}m$, single flow rotation did not appear. For performance evaluation, the intensity in microchamber was measured during 20 sec. At a chamber width of 250 ${\mu}m$, performance of rotational flow increased as Reynolds number increased. However, the variation of intensity in microchamber remained unchanged at a chamber width of 500 ${\mu}m$. The numerical analysis showed that the threshold centrifugal acceleration to obtain rotational flow for ejected particles was 200g.