• Title/Summary/Keyword: Rotation-Invariant Distance

Search Result 34, Processing Time 0.029 seconds

Efficient Rotation-Invariant Boundary Image Matching Using the Triangular Inequality (삼각 부등식을 이용한 효율적인 회전-불변 윤곽선 이미지 매칭)

  • Moon, Yang-Sae;Kim, Sang-Pil;Kim, Bum-Soo;Loh, Woong-Kee
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.949-954
    • /
    • 2010
  • Computing the rotation-invariant distance between image time-series is a time-consuming process that incurs a lot of Euclidean distances for all possible rotations. In this paper we propose an innovative solution that significantly reduces the number of Euclidean distances using the triangular inequality. To this end, we first present the notion of self rotation distance and show that, by using the self rotation distance with the triangular inequality, we can prune many unnecessary distance computations. We next present that only one self-rotation is enough for all self-rotation distances required. Experimental results show that our self rotation distance-based methods outperform the existing methods by up to an order of magnitude.

Feature Extraction in 3-Dimensional Object with Closed-surface using Fourier Transform (Fourier Transform을 이용한 3차원 폐곡면 객체의 특징 벡터 추출)

  • 이준복;김문화;장동식
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.21-26
    • /
    • 2003
  • A new method to realize 3-dimensional object pattern recognition system using Fourier-based feature extractor has been proposed. The procedure to obtain the invariant feature vector is as follows ; A closed surface is generated by tracing the surface of object using the 3-dimensional polar coordinate. The centroidal distances between object's geometrical center and each closed surface points are calculated. The distance vector is translation invariant. The distance vector is normalized, so the result is scale invariant. The Fourier spectrum of each normalized distance vector is calculated, and the spectrum is rotation invariant. The Fourier-based feature generating from above procedure completely eliminates the effect of variations in translation, scale, and rotation of 3-dimensional object with closed-surface. The experimental results show that the proposed method has a high accuracy.

  • PDF

Efficient Rotation-Invariant Boundary Image Matching Using the Envelope-based Lower Bound (엔빌로프 기반 하한을 사용한 효율적인 회전-불변 윤곽선 이미지 매칭)

  • Kim, Sang-Pil;Moon, Yang-Sae;Hong, Sun-Kyong
    • The KIPS Transactions:PartD
    • /
    • v.18D no.1
    • /
    • pp.9-22
    • /
    • 2011
  • In this paper we present an efficient solution to rotation?invariant boundary image matching. Computing the rotation-invariant distance between image time-series is a time-consuming process since it requires a lot of Euclidean distance computations for all possible rotations. In this paper we propose a novel solution that significantly reduces the number of distance computations using the envelope-based lower bound. To this end, we first present how to construct a single envelope from a query sequence and how to obtain a lower bound of the rotation-invariant distance using the envelope. We then show that the single envelope-based lower bound can reduce a number of distance computations. This approach, however, may cause bad performance since it may incur a larger lower bound by considering all possible rotated sequences in a single envelope. To solve this problem, we present a concept of rotation interval, and using the rotation interval we generalize the envelope-based lower bound by exploiting multiple envelopes rather than a single envelope. We also propose equi-width and envelope minimization divisions as the method of determining rotation intervals in the multiple envelope approach. Experimental results show that our envelope-based solutions outperform existing solutions by one or two orders of magnitude.

Effective Sonar Grid map Matching for Topological Place Recognition (위상학적 공간 인식을 위한 효과적인 초음파 격자 지도 매칭 기법 개발)

  • Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.247-254
    • /
    • 2011
  • This paper presents a method of sonar grid map matching for topological place recognition. The proposed method provides an effective rotation invariant grid map matching method. A template grid map is firstly extracted for reliable grid map matching by filtering noisy data in local grid map. Using the template grid map, the rotation invariant grid map matching is performed by Ring Projection Transformation. The rotation invariant grid map matching selects candidate locations which are regarded as representative point for each node. Then, the topological place recognition is achieved by calculating matching probability based on the candidate location. The matching probability is acquired by using both rotation invariant grid map matching and the matching of distance and angle vectors. The proposed method can provide a successful matching even under rotation changes between grid maps. Moreover, the matching probability gives a reliable result for topological place recognition. The performance of the proposed method is verified by experimental results in a real home environment.

Pattern Recognition with Rotation Invariant Multiresolution Features

  • Rodtook, S.;Makhanov, S.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1057-1060
    • /
    • 2004
  • We propose new rotation moment invariants based on multiresolution filter bank techniques. The multiresolution pyramid motivates our simple but efficient feature selection procedure based on the fuzzy C-mean clustering, combined with the Mahalanobis distance. The procedure verifies an impact of random noise as well as an interesting and less known impact of noise due to spatial transformations. The recognition accuracy of the proposed techniques has been tested with the preceding moment invariants as well as with some wavelet based schemes. The numerical experiments, with more than 30,000 images, demonstrate a tangible accuracy increase of about 3% for low noise, 8% for the average noise and 15% for high level noise.

  • PDF

Shape Description and Recognition Using the Relative Distance-Curvature Feature Space (상대거리-곡률 특징 공간을 이용한 형태 기술 및 인식)

  • Kim Min-Ki
    • The KIPS Transactions:PartB
    • /
    • v.12B no.5 s.101
    • /
    • pp.527-534
    • /
    • 2005
  • Rotation and scale variations make it difficult to solve the problem of shape description and recognition because these variations change the location of points composing the shape. However, some geometric Invariant points and the relations among them are not changed by these variations. Therefore, if points in image space depicted with the r-y coordinates system can be transformed into a new coordinates system that are invariant to rotation and scale, the problem of shape description and recognition becomes easier. This paper presents a shape description method via transformation from the image space into the invariant feature space having two axes: representing relative distance from a centroid and contour segment curvature(CSC). The relative distance describes how far a point departs from the centroid, and the CSC represents the degree of fluctuation in a contour segment. After transformation, mesh features were used to describe the shape mapped onto the feature space. Experimental results show that the proposed method is robust to rotation and scale variations.

On the Study of Rotation Invariant Object Recognition (회전불변 객체 인식에 관한 연구)

  • Alom, Md. Zahangir;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.405-408
    • /
    • 2010
  • This paper presents a new feature extraction technique, correlation coefficient and Manhattan distance (MD) based method for recognition of rotated object in an image. This paper also represented a new concept of intensity invariant. We extracted global features of an image and converts a large size image into a one-dimensional vector called circular feature vector's (CFVs). An especial advantage of the proposed technique is that the extracted features are same even if original image is rotated with rotation angles 1 to 360 or rotated. The proposed technique is based on fuzzy sets and finally we have recognized the object by using histogram matching, correlation coefficient and manhattan distance of the objects. The proposed approach is very easy in implementation and it has implemented in Matlab7 on Windows XP. The experimental results have demonstrated that the proposed approach performs successfully on a variety of small as well as large scale rotated images.

Translation- and Rotation-Invariant Fingerprint Authentication Based on Gabor Features (Gabor 특징에 기반한 이동 및 회전 불변 지문인증)

  • 김종화;조상현;성효경;최홍문
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.901-904
    • /
    • 2000
  • A direct authentication from gray-scale image, instead of the conventional multi-step preprocessing, is proposed using Gabor filter-based features from the gray-scale fingerprint around core point. The core point is located as a reference point for the translation invariant matching. And its principal symmetry axis is detected for the rotation invariant matching from its neighboring region centered at the core point. And then fingerprint is divided into non-overlapping blocks with respect to the core point and features are directly extracted form the blocked gray level fingerprint using Gabor filter. The proposed fingerprint authentication is based on the Euclidean distance between the corresponding Gabor features of the input and the template fingerprints. Experiments are conducted on 300${\times}$300 fingerprints obtained from a CMOS sensor with 500 dpi resolution, and the proposed method could lower the False Reject Rate(FRR) to 18.2% under False Acceptance Rate(FAR) of 0%.

  • PDF

Two-Dimensional Shape Description of Objects using The Contour Fluctuation Ratio (윤곽선 변동율을 이용한 물체의 2차원 형태 기술)

  • 김민기
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.2
    • /
    • pp.158-166
    • /
    • 2002
  • In this paper, we proposed a contour shape description method which use the CFR(contour fluctuation ratio) feature. The CFR is the ratio of the line length to the curve length of a contour segment. The line length means the distance of two end points on a contour segment, and the curve length means the sum of distance of all adjacent two points on a contour segment. We should acquire rotation and scale invariant contour segments because each CFR is computed from contour segments. By using the interleaved contour segment of which length is proportion to the entire contour length and which is generated from all the points on contour, we could acquire rotation and scale invariant contour segments. The CFR can describes the local or global feature of contour shape according to the unit length of contour segment. Therefore we describe the shape of objects with the feature vector which represents the distribution of CFRs, and calculate the similarity by comparing the feature vector of corresponding unit length segments. We implemented the proposed method and experimented with rotated and scaled 165 fish images of fifteen types. The experimental result shows that the proposed method is not only invariant to rotation and scale but also superior to NCCH and TRP method in the clustering power.

  • PDF

Robust 2-D Object Recognition Using Bispectrum and LVQ Neural Classifier

  • HanSoowhan;woon, Woo-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.255-262
    • /
    • 1998
  • This paper presents a translation, rotation and scale invariant methodology for the recognition of closed planar shape images using the bispectrum of a contour sequence and the learning vector quantization(LVQ) neural classifier. The contour sequences obtained from the closed planar images represent the Euclidean distance between the centroid and all boundary pixels of the shape, and are related to the overall shape of the images. The higher order spectra based on third order cumulants is applied to tihs contour sample to extract fifteen bispectral feature vectors for each planar image. There feature vector, which are invariant to shape translation, rotation and scale transformation, can be used to represent two0dimensional planar images and are fed into a neural network classifier. The LVQ architecture is chosen as a neural classifier because the network is easy and fast to train, the structure is relatively simple. The experimental recognition processes with eight different hapes of aircraft images are presented to illustrate the high performance of this proposed method even the target images are significantly corrupted by noise.

  • PDF