• Title/Summary/Keyword: Rotational Molding Machine

Search Result 4, Processing Time 0.029 seconds

Improvement of Rotational Molding Products (회전성형 제품의 성능 개선)

  • Lee, Hyeong-Min;Kim, Hyun-Joo;Lee, Jung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1834-1839
    • /
    • 2003
  • Temperature and velocity distributions of hot air flows in rotational molding machines with two different shapes and structures of oven and inlet were investigated by using FLUENT, a commercial computational fluid dynamics code. The shape and structure of oven and inlet in current rotational molding machine were improved. Two different sizes of mold inside each oven were considered in the analysis. Temperature and velocity distributions of hot air flows in two different rotational molding machines were compared to each other. In order to reduce cycle time and improve product quality in current rotational molding machine, the improved shape and structure of oven and inlet were proposed.

  • PDF

A Study on Quality Assurance for Rotational Molding Products (회전성형 제품의 품질 개선을 위한 연구)

  • Lee, Jung-Ki;Han, Hui-Duck;Kim, Hyun-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.826-837
    • /
    • 2004
  • Rotational molding is a plastics processing technique that is ideally suited to producing relatively large, hollow, seamless parts which are partially or totally enclosed. Designers of plastic parts turn to rotational molding to produce small or large parts of unusual shape that cannot be produced as one piece by other processes, e.g., blow molding and thermoforming. In this paper, in order to enhance the quality of rotational molding plastic products, 1) surface features for the plastic products are characterized by using an image analysis system, 2) maximum tensile strength for the plastic products that are made of materials that consist of Samsung-Atofina R90lU, pigments and two different kinds of calcium carbonate (OMYA CaCO$_3$) is measured and compared with each other by using an Instron universal testing machine, 3) thickness for the plastic products is non-destructively measured to investigate the quality of the plastic products by using an A-scan ultrasonic tester.

회전기계의 고온환경에서의 원격계측

  • 김치엽;최만용;허석한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.158-160
    • /
    • 1992
  • To control internal temperature distribution of moulding machine is very important in molding products such as Polycabonate. Nylon and PVDF. In this experiment, we developed temperature measurement system in order to control temperature of moulding machine. It was measured by telemetering system because of rotational mechanism. Form experimental results, it was sufficient to apply to moulding machine under 250 .deg C.

A Study on Cooling Condition for Quality Improvement of Rotary Molding Machine (회전성형기의 품질 향상을 위한 냉각 조건에 관한 연구)

  • Kang, Jeong-Seok;Kim, In;Lee, Myungjae;Yoon, Jai-young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.367-371
    • /
    • 2019
  • The molding for hollow products used widely in industry is rotational molding by heating and cooling. Uniform cooling is required to improve the quality of the product, and rapid cooling is required to improve the productivity. In this paper, the cooling condition is largely classified into the case of no forced cooling by the fan and forced cooling by the fan. In addition, when forced cooling by the fan is not performed, the condition for stopping the molding machine horizontally and the condition for stopping the molding machine vertically were classified. To confirm the forced cooling by the fan, the conditions were set such that only the molding machine rotates while the fan is not running and the upper and lower fans operate when only the lower fan is operated. The surface temperature of the rotary molding machine was analyzed by the STAR-CCM+ program for the case of air-cooling. The temperature distribution of the rotary molding machine was analyzed for five conditions and the temperature distribution for cooling was compared under each condition. Among the five cases, Case 4 was lowest at approximately 35 ℃ after 900sec.