• Title/Summary/Keyword: Rotor angle estimation

Search Result 41, Processing Time 0.025 seconds

Restarting Method for EEMF Based Sensorless Permanent Magnet Synchronous Motor Drive Systems (EEMF 기반 센서리스 영구자석 동기전동기 구동 시스템의 구동 재개 방법)

  • Lee, Young-Jae;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • This paper proposes a restarting method for extended electromotive force (EEMF)-based sensorless permanent magnet synchronous motor (PMSM) drive systems. The sensorless PMSM drive systems generally estimate the rotor speed and angle based on EEMF. However, if the inverter is stopped while the PMSM is rotating, the initial rotor speed and angle are required for restart. Therefore, the proposed restarting method estimates the initial rotor speed and angle using the short-circuit current generated by applying zero voltage vector from the inverter. The validity of the proposed method is verified by simulation and experimental results.

Simplified Rotor and Stator Resistance Estimation Method Based on Direct Rotor Flux Identification

  • Wang, Mingyu;Wang, Dafang;Dong, Guanglin;Wei, Hui;Liang, Xiu;Xu, Zexu
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.751-760
    • /
    • 2019
  • Since parameter mismatch seriously impacts the efficiency and stability of induction motor drives, it is important to accurately estimate the rotor and stator resistance. This paper introduces a method to directly calculate the rotor flux that is independent of stator and rotor resistance and electrical angle. It is based on obtaining the rotor and stator resistance using the model reference adaptive system (MRAS) method. The method has a lower computation burden and less adaptation time when compared with other rotor resistance estimation methods. This paper builds three coordinate frames to analyze the rotor flux error and rotor resistance error. A number of implementation issues are also considered.

Inflow Prediction and First Principles Modeling of a Coaxial Rotor Unmanned Aerial Vehicle in Forward Flight

  • Harun-Or-Rashid, Mohammad;Song, Jun-Beom;Byun, Young-Seop;Kang, Beom-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.614-623
    • /
    • 2015
  • When the speed of a coaxial rotor helicopter in forward flight increases, the wake skew angle of the rotor increases and consequently the position of the vena contracta of the upper rotor with respect to the lower rotor changes. Considering ambient air and the effect of the upper rotor, this study proposes a nonuniform inflow model for the lower rotor of a coaxial rotor helicopter in forward flight. The total required power of the coaxial rotor system was compared against Dingeldein's experimental data, and the results of the proposed model were well matched. A plant model was also developed from first principles for flight simulation, unknown parameter estimation and control analysis. The coaxial rotor helicopter used for this study was manufactured for surveillance and reconnaissance and does not have any stabilizer bar. Therefore, a feedback controller was included during flight test and parameter estimation to overcome unstable situations. Predicted responses of parameter estimation and validation show good agreement with experimental data. Therefore, the methodology described in this paper can be used to develop numerical plant model, study non-uniform inflow model, conduct performance analysis and parameter estimation of coaxial rotor as well as other rotorcrafts in forward flight.

A Neutral-Voltage-Compensated Sensorless Control of Brushless DC Motor

  • Won, Chang-Hee;Song, Joong-Ho;Ick Choy;Lim, Myo-Taeg
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.59-64
    • /
    • 2003
  • This paper presents a new rotor position estimation method for brushless DC motors. The estimation error of the rotor position clearly provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral-voltage-based estimation method, which is structured as a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and control table measure, which can be used for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be easily implemented by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.

Effects of Parameter Errors on Sensorless Operation of PMSM (영구자석 동기 전동기의 제정수 오차가 센서리스 운전에 미치는 영향)

  • Park, Yong-Soon;Sul, Seung-Ki;Ji, Jun-Keun;Park, Young-Jae;Lee, Dong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.71-78
    • /
    • 2011
  • In this paper, the effect of parameter errors to the estimation of the rotor angle in sensorless operation of a permanent magnet synchronous motor is analyzed. The angle error information which is utilized to estimate the rotor position can be classified into two factors, namely, the sign factor and the gain factor. This paper particularly focuses on parameter errors reflected in the sign factor of the angle error information which causes a deviation in the angle estimation. In this paper, mathematical expressions describing the deviation of the angle estimation due to the inductance error and the resistance error in the sensorless control are derived. The validity of the expression is verified by the computer simulations and the experimental results.

Implementation and Design of Inertial Sensor using the estimation of error coefficient method for sensing rotation

  • Lee, Cheol
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.95-101
    • /
    • 2020
  • We studied the Implementation and design of inertial sensor that enables to improve performance by reduce the noise of rotor which Angle of inclination. Analyze model equation including motion equation and error, signal processing filter algorithm on high frequency bandwidth with eliminates error using estimation of error coefficient method is was designed and the prototype inertial sensor showed the pick off noise up to 0.2 mV and bias error performance of about 0.06 deg/hr by the experiments. Accordingly, we confirmed that the design of inertial sensor was valid for high rotation.

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau, A.;Pacas, J.M.
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • The paper deals with the control of the synchronous reluctance machine without position senser. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau A.;Pacas J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.768-772
    • /
    • 2001
  • The paper deals with the control of the synchronous reluctance machine without position sensor. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the exact modelling of the machine, where especially the saturable inductances are of central interest. The accuracy of the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

  • PDF

Sensorless Control of a PMSM at Low Speeds using High Frequency Voltage Injection

  • Yoon Seok-Chae;Kim Jang-Mok
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • This paper describes the two control techniques to perform the sensorless vector control of a PMSM by injecting the high frequency voltage to the stator terminal. The first technique is the estimation algorithm of the initial rotor position. A PMSM possesses the saliency which produces the ellipse of the stator current when the high frequency voltage is injected into the motor terminal. The major axis angle of the current ellipse gives the rotor position information at a standstill. The second control technique is a sensorless control algorithm that injects the high frequency voltage to the stator terminal in order to estimate the rotor position and speed. The rotor position and speed for sensorless vector control is calculated by appropriate signal processing to extract the position information from the stator current at low speeds or standstill. The proposed sensorless algorithm using the double-band hysteresis controller exhibits excellent reference tracking and increased robustness. Experimental results are presented to verify the feasibility of the proposed control schemes. Speed, position estimation and vector control were carried out on the floating point processor TMS320VC33.

Speed Estimation at Coasting Condition in a Sensorless Induction Motor Drive for Railway Vehicle Traction System (철도차량 추진 제어를 위한 유도전동기 센서리스 구동 시스템에서 타행운전시 속도 추정)

  • Kim, Sang-Hoon;Park, Nae-Chun
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.31-35
    • /
    • 2010
  • In this paper, a speed estimation method at coasting operation in an induction motor speed sensorless control for railway vehicle traction systems is presented. At coasting operation, there is no information obtaining rotor speed since all switches of an inverter are turned off. The inverter frequency should be synchronized with the rotor frequency for repowering at coasting condition. The proposed method injects DC current to the induction motor during a short time, then the flux angle and rotor speed needed for control can be estimated rapidly.

  • PDF