• Title/Summary/Keyword: Rough Fracture

Search Result 51, Processing Time 0.031 seconds

Tool Fracture Detection in Milling Process (II) -Part 2: Tool Fracture Detection in Rough Milling Using Spindle Motor Current- (밀링 공정시 공구 파손 검출 (II) -제 2 편: 주축모터 전류를 이용한 밀링의 황삭 가공 중 공구파손 검출-)

  • 김기대;이강희;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.110-119
    • /
    • 1998
  • Dynamic cutting force variations in milling process were measured indirectly using spindle motor current. Magnitude of the spindle motor current is independent of cutting direction. Quasi-static sensitivity of the spindle motor current is higher than that of the feed motor current. Dynamic sensitivity of the spindle motor current is lower but cutting force was correctly represented by spindle RMS current in rough milling. In rough milling, chipping and tool fracture were well detected by the proposed tool fracture index using spindle motor current.

  • PDF

DNAPL removal from a rough-welled single fracture with Density-surfactant-motivated method

  • Lee Hang-Bok;Ji Seong-Hun;Yeo In-Uk;Lee Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.215-218
    • /
    • 2005
  • We applied the density-surfactant-motivated method to the removal of DNAPL within a rough-walled single fracture. Observations are made to compare the DNAPL residual distribution before and after the flushing of surfactant-enhanced solution or water flushing. Results show that density-motivated method with surfactant-enhanced solution effectively removed DNAPL in a single fracture.

  • PDF

The effect of nonlinear groundwater flow on DNAPL migration in a rough-walled single fracture

  • Ji Seong-Hun;Lee Hang-Bok;Yeo In-Uk;Lee Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.68-71
    • /
    • 2005
  • We conducted simple experiments to consider the influence of nonlinear groundwater flow on Trichloroethylene (TCE) as Dense Non-Aqueous Phase Liquid (DNAPL) migration in a rough walled single fracture. A glass replica of a granite sample containing a rough single fracture was made and experiments were conducted over a range of Re. Observations are compared to the results of TCE migration tests that were conducted in two parallel glass plates over the same range of Re. Results show nonlinear groundwater flow in a single fracture affect TCE migration path and residual saturation of TCE.

  • PDF

ANALYSIS OF THE PERMEABILITY CHARACTERISTICS ALONG ROUGH-WALLED FRACTURES USING A HOMOGENIZATION METHOD

  • Chae, Byung-Gon;Choi, Jung-Hae;Ichikawa, Yasuaki;Seo, Yong-Seok
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.43-52
    • /
    • 2012
  • To compute a permeability coefficient along a rough fracture that takes into account the fracture geometry, this study performed detailed measurements of fracture roughness using a confocal laser scanning microscope, a quantitative analysis of roughness using a spectral analysis, and a homogenization analysis to calculate the permeability coefficient on the microand macro-scale. The homogenization analysis is a type of perturbation theory that characterizes the behavior of microscopically inhomogeneous material with a periodic boundary condition in the microstructure. Therefore, it is possible to analyze accurate permeability characteristics that are represented by the local effect of the facture geometry. The Cpermeability coefficients that are calculated using the homogenization analysis for each rough fracture model exhibit an irregular distribution and do not follow the relationship of the cubic law. This distribution suggests that the permeability characteristics strongly depend on the geometric conditions of the fractures, such as the roughness and the aperture variation. The homogenization analysis may allow us to produce more accurate results than are possible with the preexisting equations for calculating permeability.

A Numerical Study on Dispersion of Inert Particles in a Rough Single Fracture (거친 균열 암반에서의 용질 입자 확산에 대한 수치적 연구)

  • Jeong, Woochang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.79-87
    • /
    • 2006
  • This paper presents the numerical model developed to simulate the solute transport in rough and smooth single fractures. The roughness of these fractures is represented by using the fractal surface method. In this study, the 3D transport model, which is based on the random walk technique, is used to simulate the dispersion process of a solute which is represented by numerical particles. As the simulation results, it can be observed that the dispersion of solute in the fracture is significantly affected by the fracture roughness and particle size.

  • PDF

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

A case histories on the detection of weak zone using electrical resistivity and EM surveys in planned tunnel construction site (터널 건설 예정지구에서의 전기비저항 탐사와 전자탐사의 적용을 통한 연약대 탐지에 대한 사례 연구)

  • 권형석;송윤호;이명종;정호준;오세영;김기석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.63-70
    • /
    • 2002
  • In tunnel construction, the information on the rock quality and the location of fault or fracture are crucial for economical design of support pattern and for safe construction of the tunnel. The grade of rock is commonly estimated through the observation with the naked eye of recovered cores in drilling or from physical parameters obtained by their laboratory test. Since drilling cost is quite expensive and terrains of planned sites for tunnel construction are rough in many cases, however, only limited information could be provided by core drilling Electrical resistivity and EM surveys may be a clue to get over this difficulty. Thus we have investigated electrical resistivity and EM field data providing regional Information of the rock Quality and delineating fault and fracture over a rough terrain. In this paper, we present some case histories using electrical resistivity and EM survey for the site investigation of tunnel construction. Through electrical resistivity and EM survey, the range and depth of coal seam was clearly estimated, cavities were detected in limestone area, and weak zones such as joint, fault and fracture have been delineated.

  • PDF

Numerical Life Prediction Method for Fatigue Failure of Rubber-Like Material Under Repeated Loading Condition

  • Kim Ho;Kim Heon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2006
  • Predicting fatigue life by numerical methods was almost impossible in the field of rubber materials. One of the reasons is that there is not obvious fracture criteria caused by nonstandardization of material and excessively various way of mixing process. But, tearing energy as fracture factor can be applied to a rubber-like material regardless of different types of fillers, relative to other fracture factors and the crack growth process of rubber could be considered as the whole fatigue failure process by the existence of potential defects in industrial rubber components. This characteristic of fatigue failure could make it possible to predict the fatigue life of rubber components in theoretical way. FESEM photographs of the surface of industrial rubber components were analyzed for verifying the existence and distribution of potential defects. For the prediction of fatigue life, theoretical way of evaluating tearing energy for the general shape of test-piece was proposed. Also, algebraic expression for the prediction of fatigue life was derived from the rough cut growth rate equation and verified by comparing with experimental fatigue lives of dumbbell fatigue specimen in various loading condition.