• Title/Summary/Keyword: Roughness effect

Search Result 1,722, Processing Time 0.025 seconds

The Effect of surface roughness on Finished Surface orientation of Friction Characteristics (가공방향의 마찰특성에 대한 표면거칠기 영향)

  • 유응대;김태완;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.267-272
    • /
    • 2001
  • The effect of characteristic of surface roughness and roughness patterns on frictioin was studied experimentally in boundary lubrication with reciprocating tribometer. Roughness was changed from Ra=0.2 $\mu\textrm{m}$ to Ra=1.2 $\mu\textrm{m}$. Three roughness patterns-transverse, oblique, longitudinal- were tested for various load. Ra=1.0 $\mu\textrm{m}$ roughness showed lower friction coefficient and transversal pattern showed lower friction and high scuffing load in the test conditions.

  • PDF

Effect of surface roughness on laminar flow in a micro-channel by using lattice Boltzmann method (격자 볼츠만 방법을 이용한 미소채널 내에서의 층류 유동에 대한 표면 거칠기의 영향)

  • Shin, Myung-Seob;Yoon, Joon-Yong;Byun, Sung-Joon;Kim, Kak-Joong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.179-183
    • /
    • 2006
  • Surface roughness is present in most of the microfluidic devices due to the microfabrication techniques. This paper presents lattice Boltzmann method (LBM) results for laminar flow in a microchannel with surface roughness. The surface roughness is modeled by an array of rectangular modules placed on top and bottom side of a parallel-plate channel. In this study, LBGK D2Q9 code in lattice Boltzmann Method is used to simulate flow field for low Reynolds number in a micro-channel. The effects of relative surface roughness, roughness distribution, roughness size and the results are presented in the form of the product of friction factor and Reynolds number. Finally, a significant increase in Poiseuille number is detected as the surface roughness is considered, while the effect of roughness on the microflow field depends on the surface roughness.

  • PDF

The Effect of Surface Roughness on Measuring Thermal Emissivity (열 방사율 측정시 표면거칠기의 영향)

  • 오기수;배신철
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.65-70
    • /
    • 2003
  • Thermal emissivity is generally affected by surface situation of material such as roughness. In this study, the effect of surface roughness on measuring thermal emissivity is experimented. And emissivity measurement method and equipment using hemisperical mirror is also reviewed. As the result of this research, thermal emissivity increased as long as increasing surface roughness. So, surface roughness is a essential check point when we measure the emissivity.

The Effect of Finished Surface orientation on Friction Characteristics (가공방향에 따른 마찰특성에 관한 연구)

  • 유응대;김태완;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.367-373
    • /
    • 2001
  • The effect of characteristic of surface roughness and roughness patterns on friction and sliding wear was studied experimentally under reciprocating boundary lubricant sliding conditions. The test was conducted with specimens which have various arithmetic mean value and roughness pattern under the condition of different normal load. The experimental results show that the friction coefficient is decreased because of oxidation mass and valley effect as the normal loads increasing It was found that the specimens with surface roughness with a transverally oriented pattern have a smaller firction coefficient than the other two roughness patterns under the condition of the roughness values of Ra=0.5 and Ra=0.2 .

  • PDF

Study of Mass and Flow Resistance in a Square Ribbed Microchannel using Lattice Boltzmann Method

  • Taher, Mohammad Abu;Kim, Heuy-Dong;Lee, Yeon-Won
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.207-214
    • /
    • 2014
  • Mass and flow resistance in a square ribbed microchannel have been studied numerically using the Lattice Boltzmann Method. It has been build up on two dimensional nine velocity vectors model with single relaxation time method called the Lattice Bhatnagor-Gross-Krook model. To analyze the roughness effect on the flow resistance namely the friction factor and mass flow has been discussed at the slip flow regime, $0.01{\leq}Kn{\leq}0.10$, where Kn is the Knudsen number. The wall roughness is considered by square microelements with a relative roughness height up to maximum 10% of channel height. The velocity profiles in terms of streamlines near the riblets are demonstrated to be responsible for the roughness effect. It is found that the roughness effect leads to increase the flow resistance with roughness height but it is decreased significantly with increasing the space between two roughness elements as well as the Knudsen number. In addition, the mass flow decreased linearly with increasing both roughness height and gap but significantly changed at the slip flow regime.

Bond behaviour at concrete-concrete interface with quantitative roughness tooth

  • Ayinde, Olawale O.;Wu, Erjun;Zhou, Guangdong
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • The roughness of substrate concrete interfaces before new concrete placement has a major effect on the interface bond behaviour. However, there are challenges associated with the consistency of the final roughness interface prepared using conventional roughness preparation methods which influences the interface bond performance. In this study, five quantitative interface roughness textures with different roughness tooth angles, depths, and tooth distribution were created to ensure consistency of interface roughness and to evaluate the bond behaviour at a precast and new concrete interface using the splitting tensile test, slant shear test, and double-shear test. In addition, smooth interface specimens and two separate the pitting interface roughness were also utilized. Obtained results indicate that the quantitative roughness has a very limited effect on the interface tensile bond strength if no extra micro-roughness or bonding agent is added at the interface. The roughness method however causes enhanced shear bond strength at the interface. Increased tooth depth improved both the tensile and shear bond strength of the interfaces, while the tooth distribution mainly influenced the shear bond strength. Major failure modes of the test specimens include interface failure, splitting cracks, and sliding failure, and are influenced by the tooth depth and tooth distribution. Furthermore, the interface properties were obtained and presented while a comparison between the different testing methods, in terms of bond strength, was performed.

The Effect of Finished Surface Orientation on Friction Characteristics in Boudary Lubrication (경계윤활에서의 가공방향에 대한 마찰특성의 연구)

  • 유응대;김태완;구영필;조용주
    • Tribology and Lubricants
    • /
    • v.18 no.3
    • /
    • pp.211-218
    • /
    • 2002
  • The effect of characteristic of surface roughness and roughness patterns on friction was studied experimentally in boundary lubrication with reciprocating tribometer. Roughness was changed from Ra=0.2($\mu\textrm{m}$)to Ra=1.2($\mu\textrm{m}$). Three roughness pattern-transverse, oblique, longitudinal- were tested for various load and velocity. The experimental results show that the scuffing resistance of surfaces with transversal roughness pattern is higher than that of surface with longitudinal and obliq pattern. under the conditions of the roughness values of Ra=0.2, 0.5,1.0 and 1.2. surfacer roughness (Ra) was decreased with the normal load increased before scuffing occurred. oblique pattern and longitudinal pattern with Ra=0.2 and Ra=1.0 was higher scuffing load under low sliding velocity, but with Ra=0.5 was higher scuffing load under high sliding velocity.

Enhancement of Vertical Atmospheric Dispersion Due to Roughness (조도에 기인한 연직방향 대기확산의 증대)

  • 박목현
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.6
    • /
    • pp.643-650
    • /
    • 1998
  • Many atmospheric dispersion models have been based on the Gaussian distribution concept of plume spread. In application of Gaussian plume dispersion models, vertical dispersion coefficient 3 has been known as a sensitive variable. Vertical diffusivity K2 (=Oz2/2t) tends to increase with surface roughness, and the value of K3 in urban area is larger than that in rural area due to heat emission as well as increased roughness. Though Pasquill proposed a modification scheme for qz vs x system of Pasquill-Gifford under consideration of roughness effect in 1976, there appears not to be realistic reexamination on the modification scheme. In this study literature review on the effect of terrain or roughness on venical plume dispersion has been carried out in order to improve the prediction results of atmospheric pollution concentration. Again a few research objectives on vertical atmospheric dispersion in complex terrain were Proposed.

  • PDF

Effect of road surface roughness on the response of a moving vehicle for identification of bridge frequencies

  • Yang, Y.B.;Li, Y.C.;Chang, K.C.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.4
    • /
    • pp.347-368
    • /
    • 2012
  • Measuring the bridge frequencies indirectly from an instrumented test vehicle is a potentially powerful technique for its mobility and economy, compared with the conventional direct technique that requires vibration sensors to be installed on the bridge. However, road surface roughness may pollute the vehicle spectrum and render the bridge frequencies unidentifiable. The objective of this paper is to study such an effect. First, a numerical simulation is conducted using the vehicle-bridge interaction element to demonstrate how the surface roughness affects the vehicle response. Then, an approximate theory in closed form is presented, for physically interpreting the role and range of influence of surface roughness on the identification of bridge frequencies. The latter is then expanded to include the action of an accompanying vehicle. Finally, measures are proposed for reducing the roughness effect, while enhancing the identifiability of bridge frequencies from the passing vehicle response.

Evaluation of Two-Equation Turbulence Models with Surface Roughness Effect (표면 거칠기 효과를 고려한 2-방정식 난류 모델의 성능평가)

  • Yoon, Joon-Yong;Chun, Jung-Min;Kang, Seung-Kyu;Byun, Sung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1681-1690
    • /
    • 2003
  • The effect of roughness is a change in the velocity and turbulence distributions near the surface. Turbulence models with surface roughness effect are applied to the fully developed flow in a two-dimensional, rough wall channel. Modified wall function model, low-Reynolds number k-$\varepsilon$ model, and k-$\omega$ model are selected for comparison. In order to make a fair comparison, the calculation results are compared with the experimental data. The modified wall function model and the low-Reynolds number k-$\varepsilon$ model require further refinement, while the k-$\omega$ model of Wilcox performs remarkably well over a wide range of roughness values.