• Title/Summary/Keyword: Routing performance

Search Result 1,329, Processing Time 0.032 seconds

Performance Comparison Between Routing Protocols Based on the Correlation Analysis of Performance Metrics for AODV Routing Protocol (AODV 라우팅 프로토콜의 성능 매트릭들 간의 상관관계 분석에 기반한 라우팅 프로토콜들 간의 성능 비교)

  • Lee, Yun-Kyung;Kim, Ju-Gyun
    • Journal of Information Technology Services
    • /
    • v.12 no.4
    • /
    • pp.349-367
    • /
    • 2013
  • In MANET, the AODV routing protocol with on-demand method has a problem in large control packet overhead. In order to improve this, we first need a comprehensive analysis of correlation between performance metrics and factors affecting the performance of AODV. Selected parameters based on this analysis make it enable to be a more accurate and fair performance analysis, as well as to reduce the time and effort when constructing a scenario for performance analysis. In this paper, various scenarios are configured to apply AODV by varying the values of factors affecting the performance with network simulator QualNet 5.0, and then the results are analysed using performance metrics proposed by IETF MANET working group. This paper also founds a correlation between performance metrics and factors affecting the performance for AODV routing protocol, choosing the values of factors that represent many of the most maximum and minimum values of each performance metrics, and proposes optimal simulation parameters for a more accurate performance evaluation of routing protocols with minimal scenario in experiments. Next, performance comparison of AODV, DSR and DYMO routing protocols based on the proposed simulation parameters is shown which provides a comparative analysis on the performance of on-demand routing protocols. Results of this paper could be very useful for the researcher or service provider who wants to find nice simulation environment or select a proper routing protocol.

IRSML: An intelligent routing algorithm based on machine learning in software defined wireless networking

  • Duong, Thuy-Van T.;Binh, Le Huu
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.733-745
    • /
    • 2022
  • In software-defined wireless networking (SDWN), the optimal routing technique is one of the effective solutions to improve its performance. This routing technique is done by many different methods, with the most common using integer linear programming problem (ILP), building optimal routing metrics. These methods often only focus on one routing objective, such as minimizing the packet blocking probability, minimizing end-to-end delay (EED), and maximizing network throughput. It is difficult to consider multiple objectives concurrently in a routing algorithm. In this paper, we investigate the application of machine learning to control routing in the SDWN. An intelligent routing algorithm is then proposed based on the machine learning to improve the network performance. The proposed algorithm can optimize multiple routing objectives. Our idea is to combine supervised learning (SL) and reinforcement learning (RL) methods to discover new routes. The SL is used to predict the performance metrics of the links, including EED quality of transmission (QoT), and packet blocking probability (PBP). The routing is done by the RL method. We use the Q-value in the fundamental equation of the RL to store the PBP, which is used for the aim of route selection. Concurrently, the learning rate coefficient is flexibly changed to determine the constraints of routing during learning. These constraints include QoT and EED. Our performance evaluations based on OMNeT++ have shown that the proposed algorithm has significantly improved the network performance in terms of the QoT, EED, packet delivery ratio, and network throughput compared with other well-known routing algorithms.

Performance Evaluation of DAR(Dynamic Adaptive Routing) and FSR(Flood Search Routing) Methods in a Common Channel Signaling Scheme (공통선 신호방식에서의 DAR(Dynamic Adaptive Routing)방식과 FSR(Flood Search Routing)방식의 성능평가)

  • 김재현;이종규
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.12
    • /
    • pp.1-8
    • /
    • 1994
  • In this paper, we hve compare the performance of DAR(Dynamic Adaptive Routing) with that of FSR(Flooding Search Routing) to select an adequate routing protocol in circuit-switched networs. As a performance factor, we have considered call setup time, which is the key factor of performance evaluation in circuit switched networks. We have evaluated the performance of two methods in grid topology circuit-switched networks using a commn channel signaling scheme, as application examples. As results, FSR method shows better performance than DAR method under light traffic load, when the number of links by which call has passed increases, but DAR method represents better performance than FSR method under heavy traffic load or large networks because of redundant packets.

  • PDF

Performance Improvement on MPLS On-line Routing Algorithm for Dynamic Unbalanced Traffic Load

  • Sa-Ngiamsak, Wisitsak;Sombatsakulkit, Ekanun;Varakulsiripunth, Ruttikorn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1846-1850
    • /
    • 2005
  • This paper presents a constrained-based routing (CBR) algorithm called, Dynamic Possible Path per Link (D-PPL) routing algorithm, for MultiProtocol Label Switching (MPLS) networks. In MPLS on-line routing, future traffics are unknown and network resource is limited. Therefore many routing algorithms such as Minimum Hop Algorithm (MHA), Widest Shortest Path (WSP), Dynamic Link Weight (DLW), Minimum Interference Routing Algorithm (MIRA), Profiled-Based Routing (PBR), Possible Path per Link (PPL) and Residual bandwidth integrated - Possible Path per Link (R-PPL) are proposed in order to improve network throughput and reduce rejection probability. MIRA is the first algorithm that introduces interference level avoidance between source-destination node pairs by integrating topology information or address of source-destination node pairs into the routing calculation. From its results, MIRA improves lower rejection probability performance. Nevertheless, MIRA suffer from its high routing complexity which could be considered as NP-Complete problem. In PBR, complexity of on-line routing is reduced comparing to those of MIRA, because link weights are off-line calculated by statistical profile of history traffics. However, because of dynamic of traffic nature, PBR maybe unsuitable for MPLS on-line routing. Also, both PPL and R-PPL routing algorithm we formerly proposed, are algorithms that achieve reduction of interference level among source-destination node pairs, rejection probability and routing complexity. Again, those previously proposed algorithms do not take into account the dynamic nature of traffic load. In fact, future traffics are unknown, but, amount of previous traffic over link can be measured. Therefore, this is the motivation of our proposed algorithm, the D-PPL. The D-PPL algorithm is improved based on the R-PPL routing algorithm by integrating traffic-per-link parameters. The parameters are periodically updated and are dynamically changed depended on current incoming traffic. The D-PPL tries to reserve residual bandwidth to service future request by avoid routing through those high traffic-per-link parameters. We have developed extensive MATLAB simulator to evaluate performance of the D-PPL. From simulation results, the D-PPL improves performance of MPLS on-line routing in terms of rejection probability and total throughput.

  • PDF

Flow Holding Time based Advanced Hybrid QoS Routing Link State Update in QoS Routing

  • Cho, Kang Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.4
    • /
    • pp.17-24
    • /
    • 2016
  • In this paper, we propose a AH LSU(Advanced Hybrid QoS Routing Link State Update) Algorithm that improves the performance of Hybrid LSU(Hybrid QoS Link State State Update) Algorithm with statistical information of flow holding time in network. AH LSU algorithm has had both advantages of LSU message control in periodic QoS routing LSU algorithm and QoS routing performance in adaptive LSU algorithm. It has the mechanism that calculate LSU message transmission priority using the flow of statistical request bandwidth and available bandwidth and include MLMR(Meaningless LSU Message Removal) mechanism. MLMR mechanism can remove the meaningless LSU message generating repeatedly in short time. We have evaluated the performance of the MLMR mechanism, the proposed algorithm and the existing algorithms on MCI simulation network. We use the performance metric as the QoS routing blocking rate and the mean update rate per link, it thus appears that we have verified the performance of this algorithm.

Characterizing Collaboration in Social Network-enabled Routing

  • Mohaisen, Manar;Mohaisen, Aziz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1643-1660
    • /
    • 2016
  • Connectivity and trust in social networks have been exploited to propose applications on top of these networks, including routing, Sybil defenses, and anonymous communication systems. In these networks, and for such applications, connectivity ensures good performance of applications while trust is assumed to always hold, so as collaboration and good behavior are always guaranteed. In this paper, we study the impact of differential behavior of users on performance in typical social network-enabled routing applications. We classify users into either collaborative or rational (probabilistically collaborative) and study the impact of this classification and the associated behavior of users on the performance of such applications, including random walk-based routing, shortest path based routing, breadth-first-search based routing, and Dijkstra routing. By experimenting with real-world social network traces, we make several interesting observations. First, we show that some of the existing social graphs have high routing costs, demonstrating poor structure that prevents their use in such applications. Second, we study the factors that make probabilistically collaborative nodes important for the performance of the routing protocol within the entire network and demonstrate that the importance of these nodes stems from their topological features rather than their percentage of all the nodes within the network.

A Server Based Routing Mechanism Providing QoS Routing with Efficient Support of Best Effort Traffic (QoS 라우팅과 함께 효율적인 최선트래픽 라우팅을 지원하는 서버 기반 라우팅 기법)

  • Choe, Mi-Ra;Kim, Sung-Ha;Lee, Mee-Jeong
    • The KIPS Transactions:PartC
    • /
    • v.10C no.2
    • /
    • pp.217-232
    • /
    • 2003
  • QoS routing can improve network performance while providing support for QoS guarantees. These benefits, however, comes with additional routing costs such as more complex and frequent route computation and the protocol overheads to exchange dynamic network state information. Moreover, little has been done to mininize the impact of the QoS traffic to the best effort traffic or to enhance the routine Performance of the best effort traffic when QoS routing is deployed. In this paper, it is proposed that a sewer based routing mechanism, which supports the QoS routing without incurring the QoS routing protocol overhead for the network state update exchanges and enhances the performance of the best effort traffic without affecting the performance of QoS routing. Simulation results show that the proposed scheme enhances the routing performance for the QoS traffic while reducing the routing protocol overhead. The routing performance of the best traffic is also improved with virtually no impact to the routine performance of the QoS traffic. The proposed scheme is shown to be especially effective when the ratio of QoS traffic is high, that is, when the impact of the QoS traffic to the performance of best effort traffic is significant.

Performance of Mobility Models for Routing Protocol in Wireless Ad-hoc Networks

  • Singh, Madhusudan;Lee, Sang-Gon;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.610-614
    • /
    • 2011
  • Nowadays Mobile Ad Hoc Networks (MANETs) are a very popular and emerging technology in the world. MANETs helps mobile nodes to communicate with each other anywhere without using infrastructure. For this purpose we need good routing protocols to establish the network between nodes because mobile nodes can change their topology very fast. Mobile node movements are very important features of the routing protocol. They can have a direct effect on the network performance. In this paper, we are going to discuss random walk and random waypoint mobility models and their effects on routing parameters. Previously, mobility models were used to evaluate network performance under the different routing protocols. Therefore, the network performance will be strongly modeled by the nature of the mobility pattern. The routing protocols must rearrange the changes of accurate routes within the order. Thus, the overheads of traffic routing updates are significantly high. For specific network protocols or applications, these mobility patterns have different impacts.

A study of Distributed QoS Routing Performance with Implicit 2-level Information (암시적 3단계 정보를 갖는 분산 QoS 라우팅 성능 연구)

  • Han, Jeong-Su;Jeong, Jin-Uk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.141-148
    • /
    • 2002
  • In this paper, we study the various performance of Distributed QoS Routing according to how many level of routing table information in router. And we study Flooding and recently proposed 2-level forwarding, and compare with performance of implicit 3-level forwarding. Performance factors are message overhead that is generated on Distributed QoS Routing and Route Setup success Rate, Connection blocking rate, Network Utilization. They can decide the accuracy of routing information in rouser. Our simulation shows that more level of routing table information have, lower message overhead generate but lower performance at other factors because of inaccuracy of routing information.

A Performance Comparison of Routing Protocols for Mobile Ad hoc Networks using the NS-3 (NS-3를 사용한 이동 애드혹 네트워크용 라우팅 프로토콜 성능 비교)

  • Jang, Jaeshin;Ngo, Van-Vuong;Wie, Sunghong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.308-316
    • /
    • 2015
  • In this paper, we carried out performance comparison of four routing protocols that had been proposed for mobile ad hoc networks using the NS-3 network simulator. Those four routing protocols consist of two proactive routing protocols, DSDV(destination-sequenced distance vector) and OLSR(optimized link state routing), and two reactive routing protocols, AODV(ad-hoc on-demand distance vector) and DSR(dynamic source routing). Two performance metrics, system throughput and packet delivery ratio, are adopted and performance evaluation was carried out in a square communication area where each communicating mobile node moves independently. Numerical results show that the AODV routing protocol provides the best performance among those four routing protocols.