• Title/Summary/Keyword: Ru co-sputtering

Search Result 14, Processing Time 0.033 seconds

Effects of Ru Co-Sputtering on the Properties of Porous Ni Thin Films

  • Kim, Woo-Sik;Choi, Sun-Hee;Lee, Hae-Weon;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.11 s.294
    • /
    • pp.746-750
    • /
    • 2006
  • NiO films and Ru co-sputtered NiO films were deposited by reactive magnetron sputtering for micro-solid oxide fuel cell anode applications. The deposited films were reduced to form porous films. The reduction kinetics of the Ru doped NiO film was more sluggish than that of the NiO film, and the resulting microstructure of the former exhibited finer pore networks. The possibility of using the films for the anodes of single chamber micro-SOFCs was investigated using an air/fuel mixed environment. It was found that the abrupt increase in the resistance is suppressed in the Ru co-sputtered film, as compared to undoped film.

CO Tolerance Improvement of MEA Using Metal Thin Film by Sputtering Method in PEM Fuel Cell (스퍼터링 공정으로 제조된 금속박막을 이용한 고분자전해질 연료전지 막-전극접합체의 일산화탄소에 대한 내구성 연구)

  • Cho, Yong-Hun;Yoo, Sung-Jong;Cho, Yoon-Hwan;Park, Hyun-Seo;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • When reformer for fuel cell is used, CO in hydrogen gas leads to a seriously decreased membrane electrode assembly (MEA) performance by catalyst poisoning. The effect of CO on performance of modified MEA by sputtering method is studied in this paper. The experimental results show that sputtered Pt and Ru thin film improve a single cell performance of MEA and sputtered metal thin film has a CO tolerance. The air injection process on anode show improved CO tolerance test result. Moreover, Pt, Ru and PtRu thin film by sputtering had influence on the CO tolerance with air injection process.

A Study on the Reliability of Ru-Zr Metal Gate with Thin Gate Oxide (박막 게이트 산화막에 대한 Ru-Zr 금속 게이트의 신뢰성에 관한 연구)

  • 이충근;서현상;홍신남
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.208-212
    • /
    • 2004
  • In this paper, the characteristics of co-sputtered Ru-Zr metal alloy as gate electrode of MOS capacitors have been investigated. The atomic compositions of alloy were varied by using the combinations of relative sputtering power of Ru and .Zr. C-V and I-Vcharacteristics of MOS capacitors were measured to find the effective oxide thickness and work function. The alloy made of about 50% of Ru and 50% of Zr exhibited an adequate work function for nMOS. C-V and I-V measurements after 600 and $700^{\circ}C$ rapid thermal annealing were performed to prove the thermal and chemical stability of the Ru-Zr alloy film. Negligible changes in the accumulated capacitance and work function before and after annealing were observed. Sheet resistance of Ru-Zr alloy was lower than that of poly-silicon. It can be concluded that the Ru-Zr alloy can be a possible substitute for the poly-silicon used as a gate of nMOS.

Properties of Ru1Zr1 Alloy Gate Electrode for NMOS Devices (NMOS 소자에 대한 Ru1Zr1 합금 게이트 전극의 특성)

  • Lee, Chung-Keun;Kang, Young-Sub;Hong, Shin-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.602-607
    • /
    • 2004
  • This paper describes the characteristics of Ru-Zr alloy gate electrodes deposited by co-sputtering. The various atomic composition was made possible by controlling sputtering power of Ru and Zr. Thermal stability was examined through 600 and 700 $^{\circ}C$ RTA annealing. Variation of oxide thickness and X-ray diffraction(XRD) pattern after annealing were employed to determine the reaction at interface. Low and relatively stable sheet resistances were observed for Ru-Zr alloy after annealing. Electrical properties of alloy film were measured from MOS capacitor and specific atomic composition of Zr and Ru was found to yield compatible work function for nMOS. Ru-Zr alloy was stable up to $700^{\circ}C$ while maintaining appropriate work function and oxide thickness.

MOCVD 법에 의한 Ruthenium 박막의 증착 및 특성 분석

  • 강상열;최국현;이석규;황철성;석창길;김형준
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.152-152
    • /
    • 1999
  • 1Gb급 이상 기억소자의 캐패시터 재료로 주목받고 있는 (Ba,Sr)TiO3 [BST] 박막의 전극재료로는 Pt, Ru, Ir과 같은 금속전극과 RuO2, IrO2와 산화물 전도체가 유망한 것으로 알려져 있다. 그런데, DRAM의 집적도가 증가하게 되면, BST같은 고유전율 박막을 유전재료로 사용한다 하더라도, 3차원적인 구조가 불가피하게 때문에 기존의 sputtering 방법으로는 우수한 단차피복성을 얻기 힘들므로, MOCVD법이 필수적이다. 본 연구에서는 기존에 연구되었던 Pt에 비해 식각특성이 우수하고, 비교적 낮은 비저항을 갖는 Ru 박막증착에 대한 연구를 행하였다. 본 연구에서는 수직형의 반응기와 저항 가열 방식의 susceptor로 구성된 저압 유기금속 화학증착기를 사용하여 최대 6inch 직경을 갖는 기판 위에 Ru박막을 증착하였다. Precursor로는 기존에 연구된 적이 없는 bis-(ethyo-$\pi$-cyclopentadienyl)Ru (Ru(C5H4C2H5)2, [Ru(EtCp)2])를 사용하였으며, bubbler의 온도는 85$^{\circ}C$로 하였다. Si, SiO2/Si를 사용하였으며, 증착온도 25$0^{\circ}C$~40$0^{\circ}C$, 증착압력 3Torr의 조건에서 Ru 박막을 증착하였다. Presursor를 운반하는 수송기체로는 Ar을 사용하였으며, carbon과 같은 불순물의 제거를 위해 O2를 첨가하였다. 증착된 박막은 XRD, SEM, 4-point probe등을 통해 구조적, 전기적 특성을 평가하였으며, 열역학 계산을 위해서는 SOLGASMIX-PV프로그램을 사용하였다. Ru 박막의 증착에 있어서 산소의 첨가는 필수적이었으며, Ru 박막의 증착속도는 30$0^{\circ}C$~40$0^{\circ}C$의 온도 영역에서 200$\AA$/min으로 일정하였으며, 첨가된 산소의 양이 적을수록 더 치밀하고 평탄한 표면형상을 보였으며, 또한 더 낮은 전기 전도도를 보였다. 그리고 증착된 박막은 12~15$\mu$$\Omega$cm 정도의 낮은 비저항 값을 나타냈으며 이것은 기존의 sputtering 법에 의해 증착된 Ru 박막의 비저항 값들과 비교될만하다. 한편, 높은 온도, 높은 산소분압 조건에서 RuO2의 형성을 관찰하였으며, 이것은 열역학적인 계산을 통해서 잘 설명할 수 있었다.

  • PDF

Property Comparison of Ru-Zr Alloy Metal Gate Electrode on ZrO2 and SiO2 (ZrO2와 SiO2 절연막에 따른 Ru-Zr 금속 게이트 전극의 특성 비교)

  • Seo, Hyun-Sang;Lee, Jeong-Min;Son, Ki-Min;Hong, Shin-Nam;Lee, In-Gyu;Song, Yo-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.808-812
    • /
    • 2006
  • In this dissertation, Ru-Zr metal gate electrode deposited on two kinds of dielectric were formed for MOS capacitor. Sample co-sputtering method was used as a alloy deposition method. Various atomic composition was achieved when metal film was deposited by controlling sputtering power. To study the characteristics of metal gate electrode, C-V(capacitance-voltage) and I-V(current-voltage) measurements were performed. Work function and equivalent oxide thickness were extracted from C-V curves by using NCSU(North Carolina State University) quantum model. After the annealing at various temperature, thermal/chemical stability was verified by measuring the variation of effective oxide thickness and work function. This dissertation verified that Ru-Zr gate electrodes deposited on $SiO_{2}\;and\;ZrO_{2}$ have compatible work functions for NMOS at the specified atomic composition and this metal alloys are thermally stable. Ru-Zr metal gate electrode deposited on $SiO_{2}\;and\;ZrO_{2}$ exhibit low sheet resistance and this values were varied with temperature. Metal alloy deposited on two kinds of dielectric proposed in this dissertation will be used in company with high-k dielectric replacing polysilicon and will lead improvement of CMOS properties.

The Magnetoresistance Properties of Spin Valves with CoFe/Ru/CoFe/FeMn Synthetic Antiferromagnet (Synthetic antiferromagnet CoFe/Ru/CoFe/FeMn을 이용한 스핀 밸브 구조의 자기저항 특성)

  • Jang, S.H.;Kang, T.;Kim, M.J.;Kim, H.J.;Kim, K.Y.
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.5
    • /
    • pp.196-202
    • /
    • 2000
  • Top synthetic spin valves with structure Ta/NiFe/CoFe/Cu/CoFe(P1)/Ru/CoFe(P2)/FeMn/Ta on Si(100) substrate with natural oxide were prepared by dc magnetron sputtering system, and investigated on the magnetoresistance properties and effective exchange bias field. As the thickness of FeMn increased above 150 $\AA$, MR ratio was decreased due to the current shunting effect. As the thickness of free layer decreased below 40$\AA$, MR ratio was reduced rapidly. In case of 40 $\AA$ thick of free layer, spin valve film with a structure Si(100)/Ta(50 $\AA$)/NiFe(27 $\AA$)/CoFe(13 $\AA$)/Cu(26 $\AA$)/CoFe(30 $\AA$)/Ru(7 $\AA$)/CoFe(15 $\AA$)/FeMn(100 $\AA$)/Ta(50 $\AA$) exhibited maximum MR ratio of 7.5 % and an effective exchange bias field of 600 Oe, respectively. Thickness difference dependence in this synthetic spin valve structure on effective exchange field was investigated and interpreted by the analytical method. It should be noted that thickness increase of CoFe(P 1) and decrease of CoFe(P2) in synthetic antiferromagnet leaded to the decrease in effective exchange bias field by experimentally and analytically.

  • PDF

Magnetoresistance Properties in Synthetic CoFe/Ru/CoFe/FeMn Spin Valves with Different Pinned Layer Thicknesses (합성형 반강자성체인 CoFe/Ru/CoFe/FeMn에서 고정층의 두께 차이에 따른 스핀 밸브 구호의 자기저항 특성)

  • 김광윤
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.5
    • /
    • pp.211-216
    • /
    • 2001
  • Top synthetic spin valves wi th structure Ta/NiFe/CoFe/Cu/CoFe(Pl)/Ru/CoFe(P2)/FeMn/Ta on Si (100) substrate with SiO$_2$ of 1500 were prepared by dc magnetron sputtering system. We have changed only the thickness of the free layer and the thickness difference (Pl-P2) in the two ferromagnetic layers separated by Ru, and investigated the effect of magnetic film thickness on the GMR properties and the interlayer coupling field in a spin valve with a synthetic antiferromagnet. As thickness difference of pinned layer was decreased from +25 to -25 , MR ratio was decreased gradually. However, there was a dip zone indicating a big change of MR ratio around Pl = P2, which can be due to the large canting of pinned layers. The modified Neel model was suggested for the top synthetic spin valve to explain the interlayer coupling field according to the thickness change of ferromagnetic layers. The interlayer coupling field was decreased due to the magnetostatic coupling (orange peel coupling) as suggested by model. However, the interlayer coupling field was not explained at the dip zone by the modified Neel model. The deviation of modified Neel model at the dip zone could be due to the largely canting of the pinned layers as well, which depends on different thickness in synthetic antiferromagnetic structure.

  • PDF