• Title/Summary/Keyword: Rudder Angle

Search Result 166, Processing Time 0.019 seconds

Study on the Angle-of-Attack Characteristics of the Rudder in Rotating Propeller Flow (프로펠러 회전류에서 작동하는 방향타의 받음각 특성 연구)

  • Jung, Jae Hwan;Baek, Dong Geun;Yoon, Hyun Sik;Kim, Ki-Sup;Paik, Bu-Geun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.421-428
    • /
    • 2013
  • This study aims at numerically investigating the angle of attack characteristics of the rudder behind a rotating propeller. The rotating propeller of 5 blades and the full spade rudder are placed in the numerical water tunnel with a uniform flow condition to consider propeller-rudder interaction. The turbulence closure model is employed to simulate the three-dimensional unsteady incompressible viscous turbulent flow around the propeller and the rudder. The present numerical method are well verified by comparing with the experimental results. In order to identify the dependence of the angle of attack of the rudder on the rudder angle, a wide range of rudder angles is considered. The present study carried out the quantitative and qualitative analysis of the angle of attack in terms of the pressure distribution, streamlines and the evaluation of the flow incidence, resulting in that the angle of attack increases as we move from the root and the tip to the center of the rudder, regardless of the rudder angle. The distribution of the angle-of-attack along the span is strongly affected by rotating propeller flow and rudder angle. Consequently, the distribution of the angle-of-attack of the oncoming flow against the rudder leading edge plays a role in determination of rudder performance.

PIV Measurements of Rudder Inflow Induced by Propeller Revolution in Hull Wake (선체반류 중에서 작동하는 프로펠러에 의한 방향타 유입유동 PIV 계측)

  • Paik, Bu-Geun;Kim, Ki-Sup;Kim, Kyung-Youl;Kim, Gun-Do;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.128-133
    • /
    • 2011
  • In the present study, the flow fields in between the propeller and the semi-spade rudder are investigated by using PIV technique to find out the influences of both simulated hull wake and propeller wake on the incident flow to the rudder. The velocity fields are measured at the propeller rotation angle of $180^{\circ}$ and the rudder deflection angles of $0^{\circ}$. Flow fields measured at each rudder deflection angle are analyzed in terms of angle-of-attack against the rudder leading edge. The hull wake increases the angle-of-attack more than that in the uniform inflow condition, forming the angle-of-attack of about $20^{\circ}$ at 0.7R(R=propeller radius) position. The distribution of the angle-of-attack is strongly affected by the stagnation point around the leading edge and camber effect of the rudder. These effects provide asymmetric distribution of angle-of-attack with respect to the leading edge of the rudder.

Simulation-Based Prediction of Steady Turning Ability of a Symmetrical Underwater Vehicle Considering Interactions Between Yaw Rate and Drift/Rudder Angle

  • Park, Jeong-Hoon;Shin, Myung-Sub;Jeon, Yun-Ho;Kim, Yeon-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.99-112
    • /
    • 2021
  • The prediction of maneuverability is very important in the design process of an underwater vehicle. In this study, we predicted the steady turning ability of a symmetrical underwater vehicle while considering interactions between the yaw rate and drift/rudder angle through a simulation-based methodology. First, the hydrodynamic force and moment, including coupled derivatives, were obtained by computational fluid dynamics (CFD) simulations. The feasibility of CFD results were verified by comparing static drift/rudder simulations to vertical planar motion mechanism (VPMM) tests. Turning motion simulations were then performed by solving 2-degree-of-freedom (DOF) equations with CFD data. The turning radius, drift angle, advance, and tactical diameter were calculated. The results show good agreement with sea trial data and the effects on the turning characteristics of coupled interaction terms, especially between the yaw rate and drift angle.

Study on the Model Tests of Cavitation Erosion Occurring in Navy Ship's Flat-Type Rudder (함정의 평판형 방향타 캐비테이션 침식에 대한 모형 시험 연구)

  • Bu-Geun Paik;Jong-Woo Ahn;Young-Ha Park;So-Won Jeong;Jae-Yeol Song;Yoon-Ho Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.31-37
    • /
    • 2023
  • In the present study, a method of performing cavitation erosion test directly on the anodized surface of the rudder model is proposed, not applying ink or paint on its surface. An image processing technique is newly developed to quantitatively evaluate the erosion damages on the rudder model surface after erosion test. The preprocessing saturation image, image smoothing, adaptive hysteresis thresholding and eroded area detection algorithms are in the image processing program. The rudder cavitation erosion tests are conducted in the rudder deflection angle range of 0° to -4°, which is used to maintain a straight course at the highest speed of the targeted navy ship. In the case of the conventional flat-type full-spade rudder currently being used in the target ship, surface erosion can occur on the model rudder surface in the above rudder deflection angle range. The bubble type of cavitation occurs on rudder surface, which is estimated to be the main reason of erosion damage on the rudder surface.

Development of Twisted Rudder to Reduce Fuel Oil Consumption for Medium Size Container Ship (중형 컨테이너선의 연료절감형 비틀림 타 개발)

  • Chun, Ho-Hwan;Cha, Kyung-Jung;Lee, Inwon;Choi, Jung-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.169-177
    • /
    • 2018
  • Twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin have been developed computationally for 3,000 TEU container ship through parametric study. The objective function is to minimize delivered power in model scale. Design variables are twisted angle, rudder bulb diameter and fin angle. The governing equation is Reynolds averaged Navier-Stokes equations in an unsteady turbulent flow and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. The calculation was carried out in towing and self-propulsion conditions at design speed. The sliding mesh technique was employed to simulate the flow around the propeller. Form factor is obtained from the towing computation. Self-propulsion point is obtained from the self-propelled computations at two propeller rotating speeds. The delivered power due to the designed twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin are reduced by 1.1%, 1.6%, and 2.0%, respectively.

Evaluation of the maneuverability of a real ship with flap rudder (Flap rudder를 이용한 조종성능 평가)

  • AHN, Jang-Young;KIM, Kwang-il;KIM, Min-Son;LEE, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.2
    • /
    • pp.172-182
    • /
    • 2020
  • In order to offer specific information needed to assist in operation of a ship with same type rudder through evaluating the maneuverability of training ship A-Ra with flapped rudder, sea trials based full scale for turning test, zig-zag test with rudder angle 10° and 20°, and spiral test at service condition were carried out on starboard and port sides around Jeju Island according to the standards of maneuverability of IMO. As a result, the angular velocity of port turn was higher than that of starboard turn. Therefore, the size of turning circle was longer on the starboard side. In addition, variation of the transfer due to various factors was more stable than those of the others. In the Z-test results, the mean of 1st and 2nd overshoot angles were 9.8°, 6.3° and 15.3°, 9.2° respectively when the port and starboard was 10°; the 1st overshoot angle were 18°, 13.7° when using 20°. Her maneuverability index T' and K' can be easily determined by using a computer with the data obtained from Z-test where K' and T' are dimensionless constants representing turning ability and responsiveness to the helm, respectively. In the Z-test under flap rudder angle 10°, the obtained K' value covered the range of 2.37-2.87 and T' was 1.74-3.45. Under the flap rudder angle 20°, K' and T' value showed 1.43-1.63, 1.0-1.73, respectively. In the spiral test, the loop width was unstable at +0.3° and -0.5°-0.9° around the midship of flap rudder. As a result, course stability was comparatively good. From the sea trial results, training ship ARA met the present criterion in the standards of maneuverability of IMO.

Analysis of Two-Dimensional Turbulent Flow around the Horn-type Rudder (Horn-type Rudder 주위의 2 차원 난류유동 해석)

  • Jeong, Nam-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.924-931
    • /
    • 2009
  • The two-dimensional turbulent flow around the horn-type rudder has been examined in the present study by using the commercial code FLUENT. The standard ${\kappa}-{\epsilon}$ model is used as a closure relationship. The geometry of horn rudder is based on the NACA 0020 airfoil. The simulations for various angle attack (${\alpha}$) and yaw angle(${\delta}$) are carried out. The effect of Reynolds number is also investigated in this study. The cavitation is more possible when the yaw angle is $6^{\circ}$ and it is more serious as Reynolds number increases.

Investigation on the Hydrodynamic Characteristics of Double Plate Steel Rudder for Small Fishing Boat (소형 어선용 이중강판 방향타의 유체역학적 특성 조사)

  • An, N.H.;Park, H.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.24-29
    • /
    • 2012
  • In this study, the numerical simulation has been performed to investigate the hydrodynamic evaluation between double plate steel rudder and newly designed foil type rudder for small fishing boat. The simulations are carried out in 2 speed ranges with 7 variations of flow's angle of attack which is at intervals of about 5 degree respectively. As the well-known commercial code, FLUENT and CATIA are used as the solver. The simulation results show that new designed foil type rudder is better than conventional double plate rudder in terms of Lift and Drag of running boat in the water.

A study on the influence of bow thruster for turning ability (선수 스러스터가 선회성능에 미치는 영향에 관한 연구)

  • Yang, Jeong-Hun;Ahn, Young-Wha;Choi, Chan-Moon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.42 no.2
    • /
    • pp.111-118
    • /
    • 2006
  • It is indispensable to grasp the turning ability of a ship to operate her effectively. For this purpose, the author measured the turning ability of training ship, A-RA by use of bow thruster and stem rudder. The turning ability of this ship, in case of using both of stem rudder and bow thruster at the same time, caused by increase of steering angle provides more influence to the size of tactical diameter than it caused by the power of bow thruster. But the influence of bow thruster on the turning ability is available only within rudder angle $5^{\circ}\;-\;10^{\circ}$, so it is possible to grasp that the effect of bow truster is reduced as rudder angle become bigger. In case of the influence of bow thruster by her speed, the ability of bow thruster is very effective at low speed, but it is almost not available in normal turning speed. Therefore, the using both of stem rudder and bow thruster can be useful in case of low speed proceeding at entrance or departure of the narrow waterway or inside port which sea traffic is congest for collision avoidance.

Hydrodynamic characteristics of X-Twisted rudder for large container carriers

  • Ahn, Kyoung-Soo;Choi, Gil-Hwan;Son, Dong-Igk;Rhee, Key-Pyo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.322-334
    • /
    • 2012
  • This paper shows the numerical and experimental results about the hydrodynamic characteristics of X-Twisted rudders having continuous twist of the leading edge along the span. All the results were compared with those of the semi-balanced rudder. Calculation through the Reynolds-Averaged Navier-Stokes Equation (RANSE) code with propeller sliding meshes shows large inflow angle and fast inflow velocity in the vicinity of ${\pm}0.7$ R from the shaft center, so it may cause cavitation. Also, X-Twisted rudder has relatively small inflow angles along the rudder span compared with semi-balanced rudder. For the performance validation, rudders for two large container carriers were designed and tested. Cavitation tests at the medium sized cavitation tunnel with respect to the rudder types and twisted angles showed the effectiveness of twist on cavitation and the tendency according to the twist. And the resistance, self-propulsion and manoeuvring tests were also carried out at the towing tank. As a result, in the case of X-Twisted rudder, ship speed was improved with good manoeuvring performance. Especially, it was found out that manoeuvring performance between port and starboard was well balanced compared with semi-balanced rudders.