• Title/Summary/Keyword: Rumen Digesta Particle

Search Result 12, Processing Time 0.027 seconds

Influence of Rumen Escape Starch on α-Amylase Activity in Pancreatic Tissue and Small Intestinal Digesta of Lambs

  • Xu, M.;Yao, J.H.;Wang, Y.H.;Wang, F.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1749-1754
    • /
    • 2006
  • Two slaughter experiments were conducted to determine the effects of rumen escape starch, by altering dietary starch concentration and corn particle size, on ${\alpha}$-amylase activity in the pancreas and the small intestinal digesta of lambs. In experiment 1, 18 wether lambs (28.5${\pm}$1.6 kg) were fed low, medium or high starch diets for 35 d and slaughtered. Dietary starch concentrations linearly increased rumen escape starch (p<0.05). Pancreatic ${\alpha}$-amylase activity was lower (p<0.05) in lambs fed the low starch diet. When expressed per gram of digesta, ${\alpha}$-amylase activity was lower in lambs fed the low starch diet. However, expressed as total activity, ${\alpha}$-amylase in the digesta was greater in lambs fed the medium starch diet. In experiment 2, 12 wether lambs (23.5${\pm}$0.3 kg) were fed diets with finely cracked corn, coarsely cracked corn and whole corn. These dietary treatments continued for 35 d before tissue collection. Rumen escape starch increased with increasing corn particle size (p<0.05). ${\alpha}$-amylase activity in the pancreas and the small intestinal digesta was significantly greater (p<0.05) in lambs fed the coarsely cracked corn. These data suggest that increasing rumen escape starch results in a quadratic increase in total ${\alpha}$-amylase activity in the pancreas and the small intestinal digesta. Maximum ${\alpha}$-amylase activity is reached when rumen escape starch is about 100-120 g/d in 25-30 kg lambs.

Effects of Three Feeding Systems on Production Performance, Rumen Fermentation and Rumen Digesta Particle Structure of Beef Cattle

  • Liu, Y.F.;Sun, F.F.;Wan, F.C.;Zhao, H.B.;Liu, X.M.;You, W.;Cheng, H.J.;Liu, G.F.;Tan, X.W.;Song, E.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.659-665
    • /
    • 2016
  • The effects of three different feeding systems on beef cattle production performance, rumen fermentation, and rumen digesta particle structure were investigated by using 18 Limousin (steers) with a similar body weight ($575{\pm}10kg$) in a 80-d experiment. The animals were equally and randomly divided into three treatment groups, namely, total mixed ration group (cattle fed TMR), SI1 group (cattle fed concentrate firstly then roughage), and SI2 group (cattle fed roughage firstly then concentrate). The results showed that the average daily gain was significantly higher in cattle receiving TMR than in those receiving SI1 and SI2 (p<0.05). Consumption per kg weight gain of concentrate, silage, and combined net energy (NEmf) were significantly decreased when cattle received TMR, unlike when they received SI1 and SI2 (p<0.05), indicating that the feed efficiency of TMR was the highest. Blood urea nitrogen (BUN) was significantly decreased when cattle received TMR compared with that in cattle receiving SI1 (p<0.05), whereas there was no difference compared with that in cattle receiving SI2. Ammonia nitrogen concentration was significantly lower in cattle receiving TMR than in those receiving SI1 and SI2 (p<0.05). The rumen area of cattle that received TMR was significantly larger than that of cattle receiving SI1 (p<0.05), but there was no difference compared with that of cattle receiving SI2. Although there was no significant difference among the three feeding systems in rumen digesta particle distribution, the TMR group trended to have fewer large- and medium-sized particles and more small-sized particles than those in the SI1 and SI2 groups. In conclusion, cattle with dietary TMR showed increased weight gain and ruminal development and decreased BUN. This indicated that TMR feeding was more conducive toward improving the production performance and rumen fermentation of beef cattle.

RELATIONSHIP BETWEEN PARTICLE POOL SIZE IN THE RETICULO-RUMEN AND CHEWING TIME IN SHEEP

  • Okamoto, Masahiro;Miyazaki, H.;Oura, R.;Sekine, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.3
    • /
    • pp.225-229
    • /
    • 1990
  • Sixteen mature sheep were fed chaffed orchardgrass hay once a day. Jaw movement of the sheep was recorded for 24 hours before slaughter. Four sheep were slaughtered either prior to eating, 2, 8 or 16 hours after the commencement of eating to measure digesta pool size and particle size distribution in the reticulo-rumen. Eating time was restricted to 120 minutes. Rumination time and actual chewing time during rumination increased with time after the meal. Mean dry matter (DM) pool size before and 2 hours after the meal were 1.36 and 2.45 times of DM intake, respectively. The proportion of large particle (>1.18 mm; LP) in the DM ingested during the meal was caculated to be about 70%. The mean DM and LP pool sizes per DM intake and the mean proportion of LP in the DM pool decreased with time after the meal. There were close negative relationships between either DM or LP pool sizes per DM intake and the chewing activities either expressed as time spent rumination, actual chewing time during rumination or total actual chewing time(total of eating time and actual chewing time during rumination). The difference between DM intake and LP pool size were assumed to be LP degradation in the present experiment, and correlated positively with the chewing activities. A large proportion of the digesta load was comprised of small particles, in excess of the daily intake.

EFFECT OF TIME AFTER FEEDING ON DISTRIBUTION OF FEED PARTICLES IN THE GASTROINTESTINAL TRACT OF SHEEP GIVEN ORCHADGRASS HAY ONCE A DAY

  • Sekine, J.;Imaki, Y.;Kuninishi, Y.;Oura, R.;Miyazaki, H.;Okamoto, M.;Asahida, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.55-61
    • /
    • 1992
  • To determine the effect of time after feeding on distribution of particle size of digesta in the gastrointestinal tract, 16 sheep given orchardgrass first cut hay were slaughtered at 2, 8, 16 and 24 hours after feeding and digesta in diverse sites of the tract were sieved into four fractions of particle size larger than $1180{\mu}m$, 300-1180, 45-300 and less than 45. Following results were obtained: 1) In the reticulo-rumen, the proportion of particles larger than $1180{\mu}m$ decreased with the time after feeding, while the other particle size fractions did not change with time after feeding. 2) In the post-ruminal alimentary tract, the proportion of particles larger than $1180{\mu}m$ was significantly smaller than that in the reticulo-rumen and distribution of fractions of every particle size stayed consistently at about the same level irrespective of the time after feeding. 3) In the cecum, the fraction of particle size less than $45{\mu}m$ appeared to be selectively retained when the passage rate was considered.

Influence of Fiber Content and Concentrate Level on Chewing Activity, Ruminal Digestion, Digesta Passage Rate and Nutrient Digestibility in Dairy Cows in Late Lactation

  • Tafaj, M.;Kolaneci, V.;Junck, B.;Maulbetsch, A.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1116-1124
    • /
    • 2005
  • The influence of fiber content of hay (low-fiber 47% NDF and high-fiber 62% NDF of DM) and concentrate level (high 50% and low 20% of ration DM) on chewing activity, passage rate and nutrient digestibility were tested on four restrict-fed (11.1 to 13.7 kg DM/d) Holstein cows in late lactation. Aspects of ruminal fermentation and digesta particle size distribution were also investigated on two ruminally cannulated (100 mm i.d.) cows of the same group of animals. All digestion parameters studied were more affected by the fiber content of the hay and its ratio to non structural carbohydrates than by the concentrate level. Giving a diet of high-fiber (62% NDF) hay and low concentrate level (20%) increased chewing activity but decreased solid passage rate and total digestibility of nutrients due to a limited availability of fermentable OM in the late cut fiber rich hay. A supplementation of high-fiber hay with 50% concentrate in the diet seems to improve the ruminal digestion of cell contents, whilst a depression of the ruminal fiber digestibility was not completely avoided. Giving a diet of low-fiber (47% NDF) hay and high concentrate level (50%) reduced markedly the chewing and rumination activity, affected negatively the rumen conditions and, consequently, the ruminal digestion of fiber. A reduction of the concentrate level from 50 to 20% in the diet of low-fiber hay improved the rumen conditions as reflected by an increase of the ruminal solid passage rate and of fiber digestibility and in a decrease of the concentration of large particles and of the mean particle size of the rumen digesta and of the faeces. Generally, it can be summarised that, (i) concentrate supplementation is not a strategy to overcome limitations of low quality (fiber-rich) hay, and (ii) increase of the roughage quality is an effective strategy in ruminant nutrition, especially when concentrate availability for ruminants is limited.

EFFECT OF ORCHARDGRASS GROWTH STAGE ON POOL SIZE AND KINETICS OF DIGESTA PARTICLES IN THE RUMEN OF SHEEP

  • Ichinohe, T.;Tamura, T.;Ueda, K.;Okubo, M.;Asahida, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.3
    • /
    • pp.267-273
    • /
    • 1995
  • The differences in rumen particle pool size, passage rate and rumen degradability in sheep receiving three varieties of orchardgrass hay harvested at pre-heading (H1), early-bloom (H2) and late-bloom (H3) were investigated using four ruminal-cannulated wethers (68 kg) fed 1,300 g of the hay once a day. Representative samples of whole rumen contents were collected at different times after feeding and the quantities of rumen particle pools [large particle pool (LPP), retained on a $1,180{\mu}m$ sieve; small particle pool (SPP), retained on a 47 but passed a $1,180{\mu}m$ sieve; and soluble fraction (SOL), passed a $47{\mu}m$ sieve (SOL)] were determined by a wet-sieving technique. The fullowing results were obtained: 1) The dry weight of whole rumen contents were significantly lower (p < 0.05) for HI than for H2 or H3. The reduction rate of whole rumen contents was slightly but significantly greater for HI that, the other hay varieties. 2) The LPP disappearance rates were 26.2, 25.3 and 21.7 g DM/h for H1, H2 and H3, respectively, and no statistical differences were found among the hay varieties. Appreciable changes were not observed with SPP and SOL throughout measurements for all hay varieties; however the SPP was markedly greater (p <0.05) for H2 and ill than for HI, while SOL did not differ among hay varieties. 3) The SPP passage rate (g DM/h) and effective rumen degradability (%) for HI, H2 and ill were, respectively, 9.7, 56.6; 16.9, 42.3; and 18.0, 28.9. The ruminal tum-over rate for SPP appeared to be higher for HI than for the other hay varieties.

Effect of corn grain particle size on ruminal fermentation and blood metabolites of Holstein steers fed total mixed ration

  • Kim, Do Hyung;Choi, Seong Ho;Park, Sung Kwon;Lee, Sung Sill;Choi, Chang Weon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.80-85
    • /
    • 2018
  • Objective: This study was conducted to investigate the effect of corn grain particle size on ruminant fermentation and blood metabolites in Holstein steers fed total mixed ration (TMR) as a basal diet to explain fundamental data of corn grain for cattle in Korea. Methods: Four ruminally cannulated Holstein steers (body weight $592{\pm}29.9kg$) fed TMR as a basal diet were housed individually in an auto temperature and humidity modulated chamber ($24^{\circ}C$ and 60% for 22 h/d). Treatments in a $4{\times}4$ Latin square design were TMR only (control), TMR with whole corn grain (WC), coarsely ground corn grain (CC), and finely ground corn grain (FC), respectively. The corn feeds substituted for 20% energy intake of TMR intake. To measure the ruminal pH, ammonia N, and volatile fatty acids (VFA), ruminal digesta was sampled through ruminal cannula at 1 h intervals after the morning feeding to determine ruminal fermentation characteristics. Blood was sampled via the jugular vein after the ruminal digesta sampling. Results: There was no difference in dry matter (DM) intake between different corn particle size because the DM intake was restricted to 1.66% of body weight. Different corn particle size did not change mean ammonia N and total VFA concentrations whereas lower (p<0.05) ruminal pH and a ratio of acetate to propionate, and higher (p<0.05) propionate concentration were noted when the steers consumed CC compared with WC and FC. Concentration of blood metabolites were not affected by different particle size of corn grain except for blood triglyceride concentration, which was significantly (p<0.05) increased by FC. Conclusion: Results indicate that feeding CC may increase feed digestion in the rumen, whereas the FC group seemed to obtain inadequate corn retention time for microbial degradation in the rumen.

PARTICLE POOL SIZE AND TURNOVER RATE OF INGESTA IN THE RETICULO-RUMEN OF NORMAL AND ABSESSED SHEEP

  • Okamoto, M.;Miyazaki, H.;Oura, R.;Sekine, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.3
    • /
    • pp.243-246
    • /
    • 1990
  • Sixteen mature sheep were fed chaffed orchardgrass hay once a day for 7 days. In 7th day, four sheep were slaughtered either prior to eating, 2, 8 or 16 hours after the commencement of eating to measure digesta pool size and particle size distribution in the reticulo-rumen. One sheep slaughtered at 8 hours after feeding had absesses at the cardia and in the lungs and could not ruminate normally. Time spent eating and rumination in the sheep on the day before slaughtering were 85 and 29 (pseudo-rumination 227) minutes a day, compared to those were 112 and 277 minutes in the other animals, respectively. Total actual chewing time in the sheep with absesses and the other animals were 98 and $373{\pm}132$ minutes, respectively. Dry matter(DM) intake in the sheep was $2.9g/kgBW^{0.75}$ which was only about 17% of that in the other animals. The pool sizes of reticulo-rumen DM and neutral detergent fiber (NDF) were somewhat smaller in the sheep than the others. The pool sizes of large particle (>1.18mm) DM and NDF in the animal were similar with those in the other animals. Mean DM retention time in the sheep was 207.4 hours which was about 4.2 times longer than that in the other animals.

Intake and Digestive Processes in the Rumen of Rams Fed with Digitaria decumbens Harvested at Four Stages of Grass Regrowth Age

  • Assoumaya, C.;Boval, M.;Sauvant, D.;Xande, A.;Poncet, C.;Archimede, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.925-932
    • /
    • 2007
  • This study was designed to measure the effect of regrowth age of Digitaria decumbens (D. decumbens) on the intake and dynamics of digesta in the rumen of rams. Six Black-belly rams (mean liveweight: 51.6 (s.d. 0.68) kg) fitted with rumen cannulae were fed twice daily a 14-, 28-, 42- and 56-day old fresh D. decumbens successively for 4 experimental periods. The daily dry matter intake decreased curvilineary from 75.2 to 48.5 (s.e. 2.0) g/kg $BW^{0.75}$ as the age of the D. decumbens grass increased from 14 to 56 days. Dry matter intake for the first 3 h after the morning meal was 863.6, 598.3, 576.4 and 401.5 (s.e. 55.6) g for the 14-, 28-, 42- and 56-day old grasses respectively. The pool of NDF in the rumen at the end of the 3-h feeding period did not vary significantly among the four diets. Twelve hours after the beginning of the morning meal, the pool of NDF increased with the forage regrowth age. Within the total pool of NDF, the pool of large particles tended to increase with the regrowth age. It was concluded that high intake was associated with fast evacuation of NDF from the rumen. Moreover, digestion (cellulolysis) rate and degree of particle reduction by rumination are highly correlated, though speed of physical degradation of forage seems to be the driving force behind intake.