• Title/Summary/Keyword: Runoff duration time

Search Result 67, Processing Time 0.026 seconds

A Runoff Characteristics Analysis for the Design of Interior Drainage Systems at Urbanization Catchment in the Cheju Volcanic Island (제주도 화산도서에서 도시화유역 내수처리시스템 설계를 위한 유출특성분석)

  • 김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.39-51
    • /
    • 1999
  • This study has an object to evaluate runoff characteristics with ILLUDAS model and SWMM owing to each rainfall distribution type of Huff's quartile and each rainfall duration time of 30 ,60, 120 and 180 minutes. As a result of this study, Type-Ⅰ Extreme (TIE) rainfall distribution pattern with Huff's 2nd quartile is adequate for Cheju volcanic island . To decide optimal rain fall duration , time of concentration and critical duration should be compared and analyzed each other. In this study, 30 and 120 miniutes were suggeste to iptiaml duration time of A and B study basins. It is concluded that the magnitude of peak runoff discharge is maximum with Huff's 4th quartile, and that of total runoff volume is maximum with Huff's 4th quartile for ILLUDAS model and with Huff's 1st quartile for SWMM. As rainfall duration time increasing is increasing . Also in case of total runoff volume, volumen by SWMM is less than by ILLUDAS model as to variation ratio of total runoff volume in A and B study basin. Therefore, the resulots of this study canb e sued as basic data in determining adequate rainfoal duration time and rainfall distribution type and used for urban drainage systems analysis and design at small urbanization catchment is Cheju volcanic island.

  • PDF

Runoff Characteristics Analysis for Interior Drainage Systems in Urban Basin -Application of SWMM- (도시유역의 내수배제시스템 설계를 위한 유출특성분석 -SWMM의 적용-)

  • Choi, Yun-Young;Lee, Yeong-Hwa
    • Journal of Environmental Science International
    • /
    • v.9 no.3
    • /
    • pp.193-199
    • /
    • 2000
  • This study is carried out the analysis of the runoff characteristics for the design of the interior drainage systems by SWMM in urbanization basin. The basin analyzed in this study is Bumuh-chun basin which is located in Susung-gu of Taegu city. Huff method is used for rainfall distribution analysis. The optimal rainfall duration in Bumuh-chun basin is analyzed as about 90 minutes decided from comparison of arrival time and critical duration. Flood flow variation pattern is proposed through the comparison of the results of peak flow and peak time analyzed by SWMM about pre-urbanization and post-urbanization of Bumuh-chun basin. It is known that the variation of arrival time caused by the rapid increase of pavement rate in the upper area shows about 20∼25 minutes faster than pre- urbanization. Therefore, the management of surface water for design of water supply and drainage, and channel alteration has to considered the variation of geological factors according to urbanization.

  • PDF

Analysis of Runoff Reduction Effect and Rainfall Intensity-Duration Time of Permeable Block Facility (투수블록시설의 유출저감효과 분석 및 강우강도-지속시간 관계 분석)

  • Han, Sangyun;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • Non-point pollution adversely affects the water system and its influence is increasing. In order to manage such nonpoint source pollution, the government has conducted studies on LID (Low Impact Development) facilities and various efficiency evaluations. In this study, the actual installed permeable block facility among the various LID facilities was analyzed the effluent reduction rate, the residual rainfall analysis, the runoff duration time and the reduction rate of the maximum inflow and outflow for the rainfall runoff control and the results were compared the other facilities. The analysis results show that the reduction efficiency is high in order of impermeable block, filter type permeable block, and clearance type permeable block, and the graph showing the relationship between the rainfall intensity and the runoff duration time is presented. This graph can be helpful in the design of facilities such as the facility capacity selection according to the reproduction period of the permeable block facility similar to this.

Estimation of Design Flood Runoff in Ungaged Forest Watershed to Reduce Flood Damage within the National Park (국립공원내 홍수피해 저감을 위한 미계측 산림지역의 설계홍수량 추정)

  • Kim, Sang-Min;Im, Sang-Jun;Lee, Sang-Ho;Kim, Hyung-Ho;Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.107-113
    • /
    • 2009
  • The purpose of this study is to estimate the design flood runoff for ungaged forest watershed to reduce the flood damage in national park. Daewonsa watershed in Jirisan National Park was selected as study watershed, of which characteristic factors were obtained from GIS data. Flood runoff was simulated using SCS unit hydrograph module in HEC-HMS model. SCS Curve Number (CN) was calculated from forest type area weighted average method. Huff's time distribution of second-quartile storm of the Sancheong weather station, which is nearest from study watershed, was used for design flood runoff estimation. Critical storm duration for the study watershed was 3 hrs. Based on the critical duration, the peak runoff for each sub-watershed were simulated. It is recommended to monitor the long-term flow data for major stream stations in National Park for a better reliable peak runoff simulation results.

A Study on a Runoff Coefficient of Block Paved Area with Considering Regional Rainfall Distribution (지역별 강우분포를 고려한 블록포장지역의 유출계수 산정에 관한 연구)

  • Kang, Shin-Kweon;Kim, Tae-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.111-119
    • /
    • 2008
  • The runoff coefficient for a block paved area is determined with regional rainfall distribution. The Rational Method is a basic equation of a drainage system design and is a function of runoff coefficient, rainfall intensity and area. A runoff coefficient is the ratio of rainfall intensity and runoff. The rainfall intensity which is a function of the return period and rainfall duration differs by region. Therefore the runoff coefficient varies regionally even though there is the same return period and rainfall duration. The ratio of rainfall intensity and rainfall duration is decided by the loss of rainfall. The constant infiltration capacity of Horton's equation is adopted to determine the loss of rainfall. As time passed, the joint of the block paved area through which the infiltration occurs is covered by pollution material, sandy dust, pollen and is hardened by foot pressure, so the constant infiltration capacity may decrease. Six different sites were selected to verify the assumption of the constant infiltration capacity decrease and 10 year return period. 10, 20, and 30 minute rainfall duration were applied to calculate rainfall intensity. The results indicate that the Horton's constant infiltration capacity decreases over time and the minimum constant infiltration capacity is selected to compute runoff coefficients. The runoff coefficients varied by region ranging from $0.94{\sim}0.84$ for 10 minute of rainfall duration.

Dam Failure and Unsteady Flow Analysis through Yeoncheon Dam Case(I) -Analysis of Dam Failure Time and Duration by Failure Scenarios and Unsteady Flow - (연천댐 사례를 통한 댐 파괴 부정류해석 및 하류 영향 검토(I) -댐 파괴 시나리오와 부정류 해석을 통한 지속시간 및 파괴시간 해석-)

  • Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1281-1293
    • /
    • 2008
  • This study aims at the estimation of dam failure time and dam failure scenario analysis of and applied to Yeoncheon Dam which was collapsed August 1st 1999, using HEC-HMS, DAMBRK-FLDWAV simulation model. As the result of the rainfall-runoff simulation, the lancet flood amount of the Yeoncheon Dam site was $10,324\;m^3/sec$ and the total outflow was $1,263.90\;million\;m^3$. For the dam failure time estimation, 13 scenarios were assumed including dam failure duration time and starting time, which reviewed to the runoff results. The simulation time was established with 30 minutes intervals between one o'clock to 4 o'clock in the morning on August 1, 1999 for the setup standard for each case of the dam failure time estimation, considering the arrival time of the flood, when the actually measured water level was sharply raising at Jeongok station area of the Yeoncheon Dam downstream, As results, dam failure arrival time could be estimated at 02:45 a.m., August 1st 1999 and duration time could be also 30 minutes. Those results and procedure could suggest how and when dam failure occurs and analyzes.

Trend analysis of rainfall characteristics and its impact on stormwater runoff quality from urban and agricultural catchment

  • Salim, Imran;Paule-Mercado, Ma. Cristina;Sajjad, Raja Umer;Memon, Sheeraz Ahmed;Lee, Bum-Yeon;Sukhbaatar, Chinzorig;Lee, Chang-Hee
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.45-55
    • /
    • 2019
  • Climate change has significantly affected the rainfall characteristics which can influence the pollutant build-up and wash-off patterns from the catchment. Therefore, this study explored the influence of varying rainfall characteristics on urban and agricultural runoff pollutant export using statistical approaches. For this purpose, Mann-Kendall and Pettitt's test were applied to detect the trend and breakpoint in rainfall characteristics time series. In addition, double mass curve and correlation analysis were used to drive the relationship between rainfall-runoff and pollutant exports from both catchments. The results indicate a significant decreased in total rainfall and average rainfall intensity, while a significant increased trend for antecedents dry days and total storm duration over the study periods. The breakpoint was determined to be 2013 which shows remarkable trend shifts for total rainfall, average rainfall intensity and antecedents dry days except total duration. Double mass curve exhibited a straight line with significant rainfall-runoff relationship indicates a climate change effect on both sites. Overall, higher pollutant exports were observed at both sites during the baseline period as compared to change periods. In agricultural site, most of the pollutants exhibited significant (p< 0.05) association with total rainfall, average rainfall intensity and total storm duration. In contrast, pollutants from urban site significantly correlated with antecedent dry days and average rainfall intensity. Thus, total rainfall, average rainfall intensity and total duration were the significant factors for the agricultural catchment while, antecedents dry days and average rainfall intensity were key factors in build-up and wash-off from the urban catchment.

Study on Improved Method for Calculating Runoff Coefficient of Rational Method (합리식의 유출계수(C) 산정방법의 개선에 관한 연구)

  • Lee, Young-Dai;Kim, Jong-Soon;Kim, Young-Teak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.67-74
    • /
    • 2007
  • Rational method has been widely used to calculate peak runoff drainage design or small watershed because of simplicity and convenience. Runoff coefficient(C) is the most important parameter in the rational method which varies according to rainfall intensity, return period, rainfall duration time and soil characteristics. In practice, constant which is value of C in rational formula has been used from the table, originally based on ASCE. These table value does not consider the upper conditions of the depending factors, hence peak runoff calculation could be in correct. Therefore to calculate C in this paper we have devised an improved formula, considering relationship with rainfall duration, return period and CN of NRCS method. This formula is considered to be more reliable and helpful to the hydrologists and engineers to predict correct peak runoff.

A Study on the application of Critical Rainfall Duration for the Estimation of Design Flood (설계홍수량 산정에 따른 임계지속시간의 적용성에 관한 연구)

  • Chang, Seong Mo;Kang, In Joo;Lee, Eun Tae
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.119-126
    • /
    • 2004
  • In recent, the critical rainfall duration concept is widely used but we do not have understandable criteria yet. However, the critical rainfall duration is usually calculated considering concentration time, runoff model using effective rainfall, and unit hydrograph for the estimation of design flood. This study is to derive the regression equations between the critical rainfall duration and hydrologic components such as the basin area, slope, length, CN, and so on. We use a GIS tool which is called the ArcView for the estimation of hydrologic components and the HEC-1 module which is provided in WMS model is used for the runoff computation. As the results, the basin area, basin slope, and basin length had a great influence on the estimations of peak runoff and critical rainfall duration. We also investigated the sensitivities for the peak runoff and critical duration of rainfall from the correlation analysis for the involved components in the runoff estimation.

  • PDF

A Determination of the Maximum Potential Runoff of Small Rural Basins (소하천(小河川) 유역(流域)의 잠재유출량(潛在流出量) 결정(決定))

  • Yoon, Yong Nam;Hong, Chang Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.53-62
    • /
    • 1982
  • An effort of preliminary type has been made to develope a practical method for the waterway area determination of a drainage outlet in rural or agricultural areas. The Seoul meteorological station was selected as tile index station, and the maximum rainfalls-duration-frequency (R-D-F) relation of short-time intense rainfalls was first established. A frequency analysis of the daily rainfalls for the 75 stations selected throughout the country resulted the 50-year daily rainfall for each station. The rainfall factor, which is defined here as the ration of 50-year daily rainfalls of individual station and the index station, was determined for the 8 climatological regions divided in this study. Following the US SCS method the runoff number of a watershed was given based on the soil type, land-use pattern, and the surface treatment. With this runoff number and the R-D-F relationship the runoff factors for the index station were computed and hence a nomogram could be drawn which makes it possible to determine the runoff factor for a given rainfall number and a rainfall of specific duration and frequency. With this done, the potential runoff of a watershed for a given rainfall duration could be calculated, based on the unit hydrograph theory, by multiplying the rainfall factor, the runoff factor, and the drainage area of the watershed under consideration. Then, the maximum runoff potential was determined by varying the rainfall duration and finding out the duration which results the peak discharge of a gived return period.

  • PDF