• Title/Summary/Keyword: Runway capacity

Search Result 14, Processing Time 0.022 seconds

Estimation of Incheon International Airport Capacity by using Aircraft Delay Simulation Model (시뮬레이션 모델을 활용한 인천국제공항 수용량 산정에 관한 연구)

  • Bang, Jun;Kim, DoHyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.1
    • /
    • pp.20-25
    • /
    • 2019
  • To prepare for the ever-increasing demand for air transport, airport operators should be well aware of the timing of the saturation of the facility and increase the capacity of the airport through extension or extension. The capacity of an airport is determined by the smallest value of the facilities that make up the airport, but it is generally customary to determine the capacity of the costly and time-consuming runway as a whole for the airport. For analyzing the capacity of the runway capacity, the study used the most accurate microscopic air traffic simulation, Simmod-PRO, to analyze the saturation time of three runways currently in Incheon International Airport's operation, and calculate the appropriate time for operation of the 4th runway. The study also calculate the relocation of Airport's high-speed exit taxiway for analyzing the increasing of capacity.

A Study on feasibility for runway development -IIAC 4th runway construction case study- (인천국제공항 제4활주로 건설 타당성 연구)

  • Choi, Dong Yeop;Sin, Jung Ha;Chang, Chan Hyeok;Park, Sung Do
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.2
    • /
    • pp.37-46
    • /
    • 2019
  • Although This study is to produce various considerations for the proper time and feasibility of new runway with Incheon international airport $4^{th}$ runway development case. In order to validate the feasibility of runway development, it is main considerations to be increased airport capacity for accommodating increase air traffic demand, secure stable airport operation without degrading service level, cope with emergency situation and maintain competitive among competitive airports which are developing new runway. Conclusionally, to develop new runwlay at the proper time for sustainable and stable airport operation without stop is the best way of maintaining competitiveness among foreign competitive airports.

Analysis of Runway Occupancy Time Using ADS-B Message about Landing Airplane (ADS-B를 이용한 착륙 항공기의 활주로 점유 시간 분석)

  • Ku, SungKwan;Baik, Hojong
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.167-174
    • /
    • 2016
  • Runway and taxiway is base facilities for aircraft take off and landing and runway capacity is one of major factor for airport capacity. Runway occupancy time is affect on the runway capacity. The identification of aircraft using taxiway by analysis of airport ground surveillance data and the measurement of pass time on the points is general method for the confirmation of the runway occupancy time. This study is runway occupancy time analysis of landing airplane using ADS-B message, in this study we surveyed landing aircraft runway occupancy time and analysis of serviced record using taxiway include rapid exit taxiway. The result of analysis is to confirm the different of landing direction and aircraft category on the same runway caused by structure of airport. Also the result of runway occupancy time analyzed data, it is base input data for the air transportation simulation.

Estimation of Annual Runway Capacity for Jeju International Airport Considering Aircraft Delays (항공기 지연시간을 고려한 제주국제공항 활주로 연간용량 산정)

  • Park, Jisuk;Yun, Seokjae;Lee, Youngjong;Baik, Hojong
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.2
    • /
    • pp.214-222
    • /
    • 2015
  • Jeju International Airport has become the most delayed airport in Korea, due to increased demand in air passengers and unexpected local weather condition. Observing the demands continuously grow for a decade, the airport is expected to be saturated in the near future. As a part of effort to prepare effective and timely measure for this expected situation, airport planners seeks the annual runway capacity, i.e., the appropriate number of flight operations in a given year with tolerable delay. In practice, the FAA formula is frequently adopted for the capacity estimation. The method, however, has intrinsic issues: 1) the hourly capacity imbedded in the formula is not clearly defined and thus the estimated value is vulnerable to be subjective judgement, and 2) the formula doesn't consider aircraft delay resulted from runway congestion. In this paper, we explain a novel method for estimating the daily runway capacity and then converting to the annual capacity taking into account the aircraft delay. In this paper, average delay of aircraft was measured using microscopic air traffic simulation model. Daily capacity of the runways were analyzed based on the simulation outputs and the method to assess the yearly capacity is introduced. Using a microscopic simulation model named TAAM, we measure the average aircraft delay at various levels of flight demand, and then estimate the practical daily runway capacity. The estimated daily and annual runway capacities of Jeju airport are about 460 operations a day which is equal to 169,000 operations year. The paper discusses how to verify the simulation model, and also suggests potential enhancement of the method.

Comparative Analysis of Runway Ultimate Capacity using Wake Turbulence Re-Categorization (Wake Turbulence RECAT을 적용한 활주로 절대 수용량 비교 분석)

  • Jeongwoo Park;Huiyang Kim;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.498-509
    • /
    • 2021
  • The wake turbulence at the wingtip of preceding aircraft may affect the normal operation of following aircraft. Aircraft are classified into four categories according to their maximum take-off weight, and horizontal separation is applied with this category matrix. The FAA and EUROCONTROL revealed that the magnitude and effect of preceding aircraft wake turbulence were smaller than the current distance separation minima suggest. This new information presents the opportunity for revising wake turbulence minima into seven categories (RECAT). This paper confirms the feasibility of implementing RECAT at major airports in South Korea using the draft of ICAO Doc. 10122. The paper also calculates the ultimate runway capacity of Incheon International Airport in South Korea using the Harris Model and comparatively analyzes the amount of runway capacity. As a result of the analysis, it was confirmed that the implementation of RECAT could increase the ultimate runway capacity of Incheon International Airport. This paper's calculation methods and results can be used as primary data for implementing RECAT in other airports.

Estimated Analysis for Runway Occupancy Time Improvement (활주로 점유 시간 개선의 효과성 예측 분석)

  • GwangHoon Park;GumSeock Kang;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.666-673
    • /
    • 2023
  • The runway occupancy time of landing aircraft is an important factor in determining runway capacity. The purpose of this study is to suggest improvement measures for runway occupancy time to improve the operation of existing airports. In order to derive improvement measures, a comparative analysis was conducted on the effectiveness of improvement using aircraft operation status data for specific days at the case airport. The FAA REDIM model was used to analyze the improvement plan, and the improvement application function of the model was used to confirm the effect of improving runway capacity by adding a rapid escape taxiway to an airport without a rapid escape taxiway. This study's approach can be applied to the derivation of runway improvement measures and preliminary prediction of effectiveness, and it presents cases that can be applied to future airport construction projects or airport improvement projects.

A Comparative Study on Delay Calculation Method of Airport Capacity (공항 수용량의 지연시간 산출방식 비교 연구)

  • Lee, HyoJu;Kim, DoHyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.2
    • /
    • pp.47-52
    • /
    • 2020
  • Air transport demand is on a sharp rise due to growth in the aviation market. To prepare for this rapidly growing demand for aviation, airport operators are interested in the processing airport capacity. Airport throughput is determined to be the smallest of the facility capacities that make up the airport, but it is customary to determine the cost and time consuming runway capacity as airport capacity. Previous studies have shown that while recent studies have been conducted on airport capacity, there is little research on the criteria for determining capacity. In this study, we would like to determine the extent to which airport capacity is affected by the airport's operating hours and the resulting delays.

A Mathematical Model for Calculating the Capacity in Terminal Control Areas (접근관제구역 수용량 산정을 위한 수리적 모형)

  • JongMok Chae;Hojong Baik;Jang Ryong Lee;Janghoon Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.4
    • /
    • pp.7-18
    • /
    • 2023
  • The continuous increase in air traffic emphasizes the importance of capacity calculation. Research on the calculation method of Terminal Control Area (TMA) capacity has been treated as a partial aspect of the airspace sector capacity or has been limitedly studied. This study aims to propose a mathematical model for calculating TMA capacity, taking into account the Standard Terminal Arrival Route (STAR), separation standards, TMA entry speed, and runway threshold passing speed. The proposed model has the advantage of being able to calculate the instantaneous arrival capacity, which has not been noted in previous studies, along with the throughput. Additionally, it is meaningful as the model can easily calculate the arrival capacity of the TMA considering airport construction, runway expansion, or new procedures.

Effective simulation-based optimization algorithm for the aircraft runway scheduling problem

  • Wided, Ali;Fatima, Bouakkaz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.335-347
    • /
    • 2022
  • Airport operations are well-known as a bottleneck in the air traffic system, putting growing pressure on the world's busiest airports to schedule arrivals and departures as efficiently as possible. Effective planning and control are essential for increasing airport efficiency and reducing aircraft delays. Many algorithms for controlling the arrival/departure queuing area are handled, considering it as first in first out queues, where any available aircraft can take off regardless of its relative sequence with other aircraft. In the suggested system, this problem was compared to the problem of scheduling n tasks (plane takeoffs and landings) on a multiple machine (runways). The proposed technique decreases delays (via efficient runway allocation or allowing aircraft to be expedited to reach a scheduled time) to enhance runway capacity and decrease delays. The aircraft scheduling problem entails arranging aircraft on available runways and scheduling their landings and departures while considering any operational constraints. The topic of this work is the scheduling of aircraft landings and takeoffs on multiple runways. Each aircraft's takeoff and landing schedules have time windows, as well as minimum separation intervals between landings and takeoffs. We present and evaluate a variety of comprehensive concepts and solutions for scheduling aircraft arrival and departure times, intending to reduce delays relative to scheduled times. When compared to First Come First Serve scheduling algorithm, the suggested strategy is usually successful in reducing the average waiting time and average tardiness while optimizing runway use.

Study on Revitalization Plan for Cheongju International Airport: Focusing on Airport Facilities, Access Transportation, and Flight Network (청주국제공항 활성화 방안 연구: 공항시설, 접근교통 및 운항 네트워크를 중심으로 )

  • Wontae Park;Dong-Kyun Im
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • In this study, we reviewed access transportation, operating companies, and airport infrastructure to revitalize Cheongju International Airport. Regarding access transportation infrastructure, it is necessary to promote a railway network connecting the metropolitan inland line and the central inland region. In addition, active administrative support from local governments is required to ensure smooth progress in railway and highway infrastructure linkage projects, such as the Osong Connecting Line and Chungbuk Line, high-speed rail network promotion, and expansion of the Chungbuk Eastern Axis Expressway and Central Expressway. Regarding operator access infrastructure, continuous efforts are required to add and attract airlines based at Cheongju International Airport. Regarding airport infrastructure, the Cheongju International Airport runway needs complete resurfacing due to its deterioration. Domestic passenger capacity has exceeded 6.5%, and considering the increase in import and export of high value-added goods in the North Chungcheong region, it is necessary to build and expand passenger terminals and cargo terminals. Cheongju International Airport's runway does not have enough runway length to operate large and ultra-large aircraft, so if it is extended from the existing 2,744m to 456m to 3,200m, several benefits can be expected in terms of revitalizing Cheongju Airport, such as route expansion.