• Title/Summary/Keyword: S%2FV Ratio

Search Result 9, Processing Time 0.034 seconds

Impacts of Transparency and Disclosures on Firm Valuation of the Healthcare Sector in India

  • Saumya, SINGH;Pracheta, TEJASMAYEE;Venkata Mrudula, BHIMAVARAPU;Arpita, SHARMA;Rameesha, KALRA;Sanjeev, KADAM;Poornima, TAPAS;Shailesh, RASTOGI
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.10 no.2
    • /
    • pp.153-161
    • /
    • 2023
  • This study's principal goal is to find the interrelation between transparency & disclosure (TD) and the healthcare sector's firm valuation (FV). The paper uses the market-to-book (MTB) ratio and market capitalization as proxies, where sales measure act as a control variable. Dynamic panel data regression (PD) is the method applied for analyzing data. Data pertains to 10 healthcare companies gathered over five years (2016-2020). Results imply that TD has a negative and significant influence on the FV, where market capitalization acts as a proxy for valuation. This association indicates that a greater degree of TD diminishes FV. TD is also reported to have a negative and insignificant association with MTB. Therefore, TD does not influence FV. The findings of this paper have significant practical implications. Results can help policymakers determine mandatory disclosure levels that are not detrimental to the healthcare sector. Managers and analysts must also analyze the dimensions of disclosure that can negatively impact the firm's valuation and make decisions regarding TD accordingly. This is the first study to assess the influence of TD on the FV of the Indian healthcare sector, which makes it unique. This study is limited to the healthcare sector, which is its shortcoming.

광량과 온도 변화에 따른 고추(Capsicum annuum L.) 잎 광계 II의 광억제

  • 홍영남
    • Journal of Plant Biology
    • /
    • v.38 no.4
    • /
    • pp.373-380
    • /
    • 1995
  • Photoinhibition of photosystem (PS) n was induced in primary leaves of 25 day-old peppers grown $100\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1},\;at\;25^{\circ}C$. The modulation of PSII functionality in vivo was induced by varying both irradiance ($0-3000\;{\mu}molm^{-2}{\cdot}s^{-1}$) and duration (0-70 min) of light treatment. The functionality of PSII was investigated in terms of photochemical efficiency of PSII (Fv/Fm) and quantum yield of $O_2$ evolution, and expressed as a function of photon exposure [$mol\;photons{\cdot}m^{-2}$, the product of irradiance and duration of light treatment (Bell and Rose, 1981)]. Contrary to the linear decline of Fv/Fm ratio showing 50% decreases by absorption of $10\;mol\;photons{\cdot}m^{-2$, quantum yield of $O_2$ evolution decreased biphasically with increasing photon exposure, showing 50% decreases by absorption of $5.5\;mol\;photons{\cdot}m^{-2}$. Treatment of low temperature at $15^{\circ}C$ for 30 min alone did not affect the functionality of PSII, but high temperature ($45^{\circ}C$) significantly inactivated PSII activity. However, when Jeaves of pepper were subjected to low or high temperature in the presence of light, PSII was substantially photoinactivated. These results suggest the presence of different photoinhibitory mechanisms at low and high temperature.rature.

  • PDF

The Effect of NaCl on the Greening of Etiolated Leaves of Barely (Hordeum vulgare L.) Seedings (NaCl이 황백화된 보리(Hordeum vulgare L.) 잎의 녹화에 미치는 영향)

  • 정화숙;임영진;송승달;노광수;송종석;박강은
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1023-1030
    • /
    • 2002
  • The effects on photosynthesis of NaCl(0, 0.2, 0.4, 0.6, 0.8 or 1.0 M) were examined in etiolated barley seedlings. Chlorophyll(Chl) a, Chl b and carotenoid contents, Chl a fluorescence and quenching coefficients of Chl fluorescence have been determined in the primary leaves of etiolated barley seedlings cultivated under low light(60 $\mu$$m^{-2}\;s^{-1}$). Chl a, b, and carotenoid contents were decreased remarkably in comparison with the control at 0.4 M NaCl. However, the value of Fo and Fv were decreased at 0.6 M NaCl and the ratio of Fv/Fm were deceased at 1.0 M NaCl. Chlorophyll synthesis was seriously inhibited from 0.4 M NaCl, and the photosynthetic electron transport system was inhibited from 0.6 M NaCl. Quantum of photosystem II reaction center was inhibited at 1.0 M NaCl. The effects of NaCl on the Chl content were raised in a 6 hrs, but the effects of NaCl on the value of Fo, Fv and Fv/Fm were raised in 30 hrs. The value of qP was decreased in comparison with the control at all concentrations, but there was a small change in the value qE. These results provide evidence that NaCl inhibited effects of various concentration of NaCl were inhibited quinone redox, however, proton gradient between thylakoid membranes was little damaged.

Chlorophyll Fluorescence, Chlorophyll Content, Graft-taking, and Growth of Grafted Cucumber Seedlings Affected by Photosynthetic Photon Flux of LED Lamps (LED 램프의 광합성유효광양자속이 오이접목묘의 엽록소형광, 엽록소함량, 활착 및 생장에 미치는 영향)

  • Kim, Hyeong Gon;Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2018
  • Chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings as affected by photosynthetic photon flux (PPF) of LED lamps were analyzed in this study. Four PPF levels, namely 25, 50, 100, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ were provided to investigate the effect of light intensity on the chlorophyll fluorescence, chlorophyll content, graft-taking and growth of grafted cucumber seedlings. Air temperature, relative humidity, and photoperiod for graft-taking were maintained at $25^{\circ}C$, 90%, $16h{\cdot}d^{-1}$, respectively. Maximum quantum yield (Fv/Fm) of rootstock as affected by PPF was found to be 0.84-0.85 and there was no significant change in Fv/Fm. Even though Fv/Fm of scion measured at 2 days after grafting was lowered to 0.81-0.82, after then it gradually increased with increasing PPF. At 4 days after grafting, the chlorophyll content extracted from scion increased with increasing PPF. Graft-taking ratio of grafted cucumber seedlings was 90-95% as PPF was ranged from $25{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ to $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. However, the graft-taking ratio of grafted seedlings healed under PPF of $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was decreased to 80%. Maximum PPF measured required for smooth joining of rootstock and scion was assumed to be $100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. At healing stage of grafted cucumber seedlings, Fv/Fm of scion decreased and at least two days after grafting were required for rooting of grafted seedlings. Chlorophyll fluorescence response of rootstock and scion was linked to light irradiation. Therefore, it was concluded that physical environment including light and humidity during healing process of grafted seedlings should be controlled more precisely to facilitate root formation and to prevent scion from lowering Fv/Fm. Further studies are required to investigate the effects of root development and joining of vascular bundles of grafted seedlings on the chlorophyll content of scion.

Effects of Ultraviolet-B Radiation on Photosynthesis in Tobacco (Nicotiana tabacum cv. Petit Havana SR1) Leaves (자외선-B 스트레스에 대한 담배 잎의 광합성 능의 변화)

  • Lee, Hae-Youn;Park, Youn-Il;Hong, Young-Nam
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.239-245
    • /
    • 2007
  • The effect of ultraviolet-B (UV-B) radiation on photosynthesis was studied by the simultaneous measurements of $O_2$ evolution and chlorophyll (Chl) fluorescence in tobacco leaves. When the tobacco leaves were teated with UV-B (1 $W{\cdot}m^{-2}$), the maximal photosynthetic $O_2$, evolution (Pmax; 4.60 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) at 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) was decreased with increasing time of UV-B treatment showing 80% decline after 4 h treatment. Chl fluorescence parameters were also affected by ultraviolet-B. Fo was increased while both Fm and Fv were decreased, resulted in the decreased of photochemical efficiency of PSII (Fv/Fm). Non-radiative dissipation of absorbed light as heat as estimated as NPQ (Fm/Fm' - 1) was also decreased with increasing time of UV-B treatment while the extent of photochemical quenching (qP) was not changed. Thus, the ratio of (1-qP)/NPQ parameter was also increased with increasing time of UV-B treatment indicating PSII is under the threat of photoinhibition. The result indicate that UV-B primarily decreases the capacity to dissipate excitation energy by trans-thylakoid pH, which in turn inhibits PSII activity.

The Effect of Salicylic Acid on $Cd^{2+}$-induced Physiological Toxicity in Commelina communis L. ($Cd^{2+}$에 의한 닭의장풀의 생리적 독성에 salicyclic acid가 미치는 영향)

  • 이준상
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.1
    • /
    • pp.73-77
    • /
    • 2002
  • The effect of salicylic acid (SA) on C $d^{2+}$ - induced physiological toxicity in Commelina communis was investigated. 3- weeks old Commelina communis was transferred to and grown in Hoagland solution in the presence or absence of 100 $\mu$M C $d^{2+}$ and SA for 3 weeks. In the treatment of C $d^{2+}$ + SA, the length of stem was increased to 0.7 cm for 3 weeks (C $d^{2+}$, 2.1cm; control, 7.2 cm). C $d^{2+}$ + SA reduced total chlorophyll content up to 86%, and changed chlorophyll a/b ratio below 1.6. C $d^{2+}$ + SA also reduced about 40-78% of water potential, but C $d^{2+}$ increased 16-39% from 1 week to 3 weeks. C $d^{2+}$ + SA also inhibited 27% of Fv/Fm, but in case of C $d^{2+}$, Fv/Fm was not changed. The treatment of C $d^{2+}$ + SA showed about 37-58% inhibition of photosynthetic activity when measured at various light intensity (500-1000 $\mu$mol $m^{-2}$ $s^{-1}$ ). In the case of C $d^{2+}$ treatment, photosynthetic activity was inhibited to 12-15%. Similar effect was found in terms of stomatal conductance. Therefore, it could be concluded that the treatment of C $d^{2+}$ + SA into plant decrease or block various physiological activities and lend to die by double effects of both chemicals.cts of both chemicals..

Changes in Physiological Characteristics of Barley Genotypes under Drought Stress (한발저항성 정도가 다른 보리 품종들의 한발처리에 따른 생리적 특성변화)

  • 이변우;부금동;백남천;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.6
    • /
    • pp.506-515
    • /
    • 2003
  • Six barley varieties that showed different degree of drought tolerance were grown with and without drought stress treatment (control), and investigated for the temporal changes in growth and several physiological traits after drought treatment. Soil water potential was -0.05 ㎫ at the initial stage of drought treatment and dropped to -0.29 ㎫ at 19 days after withholding irrigation. Soil water potential (SWP) maintained at -0.05 ㎫ in the control. The dry weight (DW) under the drought treatment were reduced compared to the control as follows: Dicktoo-S (short awn), 69% ; Dicktoo-L (long awn), 70%; Dicktoo-T (tetra), 86%; Dongbori-1, 69%; Suwonssalbori-365, 55% and Tapgolbori, ,37%. Dicktoo lines and Dongbori-1 were more tolerant than Suwonssalbori-365 and Tapgolbori. Leaf relative water contents (RWC) and leaf water potential (LWP) decreased obviously under the drought condition, the decrease being greater especially in the less drought-tolerant barley genotypes. Dongbori-1 and Dicktoo-L in drought treatment showed net photosynthesis of 38% and 17% compared to the control, respectively, and the other four genotypes much lower photosynthesis of 1.1% to 7.0%. Stomatal conductance, mesophyll conductance, and the photochemical efficiency (Fv/Fm) of PS II were reduced by drought treatment, the reduction being greater in drought-sensitive genotypes. The drought-tolerant genotypes had greater osmotic adjustment (OA) capacity under water stress. Thus, the decrease of RWC and LWP was lower and the turgor pressure conservation capacity was higher under water stress in drought-tolerant genotypes. Drought-tolerant genotypes showed less decrease of photosynthesis because stomatal conductance, mesophyll conductance and the ratio (Fv/Fm) of the variable to maximal fluorescence of drought-resistant genotype was decreased less in the drought stress condition. In conclusion, the drought-tolerant genotypes had better water conservation capacity through efficient OA, and this led to the lower decrease of photosynthesis and growth in water stress condition.

Effects of Supplemental Green LEDs to Red and Blue Light on the Growth, Yield and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L.) in Plant Factory (수경재배 식물공장에서 다양한 보광 LED가 시금치의 생육과 수량에 미치는 영향)

  • Dung, Nguyen Thi Phuong;Huyen, Tran Thi Thanh;Jang, Dong Cheol;Kim, Il Seop;Thach, Nguyen Quang
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.171-180
    • /
    • 2020
  • The effect of three different light qualities on growth, photosynthesis, quality and safe parameters of hydroponic cultivated spinach (Spinacia oleracea L.) were investigated indoor. Three different light qualities were created of red (660 nm), blue (450 nm) and green (550 nm) LEDs corresponding at ratio R660/B450 = 4/1 (RBL); R660/B450/G550= 5/2/3 (WWL); R660/B450/G550 = 1/1/1 (WL), which were tested at the same intensity (PPFD =190 μmol m-2 s-1). The results showed that the plant height and leaf number were the lowest in WL treatment. The SPAD, Net photosynthesis rate Pn, Fv/Fm, Leaf area index LAI values and all parameters of root characteristics were the highest in RBL treatment and were significantly different from two others. Fresh weight of stem, leaf and root, dry weight of root in the three light qualities were significantly different. In contrast, the highest K+ content in WL was different from WWL and RBL treatments, while Ca2+ and Fe2+ content were the highest in the RBL treatment. Vitamin C content was significantly different between the three treatments. nitrate and oxalic acid contents were the highest in WL treatment, whereas soluble-solids contents and vitamin C contents were the highest in RBL treatment. Oxalic acid, nitrate contents were observed tending reduced under WWL although oxalic acid content in RBL treatment was not different from WL and WWL treatments. In all three different light treatments were not detected Salmonella, E.coli. Our results suggest that RBL may be appropriate light for growth of spinach, but supplementary green light to a combination of red and blue LEDs at the reasonable rate can change the quality of spinach in a positive direction. Hydroponic cultivated spinach was safe for users.

Effect of Exogenous Application of Salicylic Acid or Nitric Oxide on Chilling Tolerance and Disease Resistant in Pepper Seedlings (외생 살리실산과 일산화질소 처리가 고추묘의 저온 내성 및 병 저항성에 미치는 영향)

  • Park, Song-Yi;Kim, Heung-Tae;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.23 no.4
    • /
    • pp.329-336
    • /
    • 2014
  • As an abiotic stress, chilling stress is one of the major factors limiting plant growth and increasing susceptibility to pathogens. Therefore, enhancing stress tolerance in plants is an important strategy for their survival under unfavorable environmental conditions. The objective of this study was to determine the effects of the exogenous application of salicylic acid (SA) or nitric oxide (NO) on chilling tolerance in pepper seedlings. Pepper (Capsicum annuum L. 'kidaemanbal') seedlings were grown under normal growing conditions ($20/25^{\circ}C$, 15 hours photoperiod, $145{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, fluorescence lamps) for 23 days after transplanting. The solution (3 mL) of 1 mM SA and 0.3 mM NO with surfactant triton 0.1% were sprayed two times a week, respectively. Right after the completion of chemical application, seedlings were subjected to chilling condition at $4^{\circ}C$ for 6 hours under dark condition and then the seedlings were recovered at the normal growing conditions for 2 days. In order to assess plant tolerance against chilling stress, growth characteristics, chlorophyll fluorescence (Fv/Fm), and membrane permeability were determined after chilling stress imposition. Total phenolic concentration and antioxidant capacity were measured during the whole experimental period. Disease incidence for pepper bacterial spot and wilt was also analyzed. Pepper seedlings treated with SA or NO were maintained similar dry mass ratio, while the value in control increased caused by chilling stress suggesting relatively more water loss in control plants. Electrolyte leakage of pepper seedlings treated with SA or NO was lower than that of control 2 days after chilling treatment. Fv/Fm rapidly decreased after chilling stress in control while the value of SA or NO was maintained about 0.8. SA increased higher total phenolic concentration and antioxidant capacity than NO and control during chemical treatment. In addition, increase in total phenolic concentration was observed after chilling stress in control and NO treatment. SA had an effect on the reduction of bacterial wilt in pepper seedlings. The results from this study revealed that pre-treatment with SA or NO using foliar spray was effective in chilling tolerance and the reduction of disease incidence in pepper seedlings.