• Title/Summary/Keyword: S-47

Search Result 9,196, Processing Time 0.041 seconds

Genetic Structure of xyl Gene Cluster Responsible for Complete Degradation of (4-Chloro )Benzoate from Pseudomonas sp. S-47

  • Park, Dong-Woo;Lee, Kyoung;Chae, Jong-Chan;Kudo, Toshiaki;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.483-489
    • /
    • 2004
  • Pseudomonas sp. S-47 is a bacterium capable of degrading benzoate as well as 4-chlorobenzoate (4CBA). Benzoate and 4CBA are known to be degraded via a meta-cleavage pathway characterized by a series of enzymes encoded by xyl genes. The meta-cleavage pathway operon in Pseudomonas sp. S-47 encodes a set of enzymes which transform benzoate and 4CBA into TCA cycle intermediates via the meta-cleavage of (4-chloro )catechol to produce pyruvate and acetyl-CoA. In the current study, the meta-pathway gene cluster was cloned from the chromosomal DNA of S-47 strain to obtain pCS1, which included the degradation activities for 4CBA and catechol. The genetic organization of the operon was then examined by cloning the meta-pathway genes into a pBluescript SKII(+) vector. As such, the meta-pathway operon from Pseudomonas sp. S-47 was found to contain 13 genes in the order of xylXYZLTEGFlQKIH. The two regulatory genes, xylS and xylR, that control the expression of the meta-pathway operon, were located adjacently downstream of the meta-pathway operon. The xyl genes from strain S-47 exhibited a high nucleoside sequence homology to those from Pseudomonas putida mt-2, except for the xylJQK genes, which were more homologous to the corresponding three genes from P. stutzeri AN10. One open reading frame was found between the xylH and xylS genes, which may playa role of a transposase. Accordingly, the current results suggest that the xyl gene cluster in Pseudomonas sp. S-47 responsible for the complete degradation of benzoate was recombined with the corresponding genes from P. putida mt-2 and P. stutzeri AN10.

Isolation of pseudomonas sp. S-47 and its degradation of 4-chlorobenzoic acid

  • Seo, Dong-In;Lim, Jai-Yun;Kim, Young-Chang;Min, Kyung-Hee;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.188-192
    • /
    • 1997
  • The strain of S-47 degrading 4-chlorobenzoic acid (4CBA) was isolated from Ulsan chemical industrial complex by enrichment cultivation with 1 mM 4CBA. The strain was Gram-negative rod and grew optimally at 30.deg.C and pH 7 under aerobic condition, so that the organism was identified as a species of Pseudomonas. Pseudomonas sp. S-47 degraded 4-chlorobenzoic acid to produce a yellow-colored meta-cleavage product, which was confirmed to be 5-chloro-2-hydroxymuconic semialdehyde (5C-2HMS) by UV-visible spectrophotometry. 5C-3HMS was proved trometry. This means that Pseudomonas sp. S-47 degraded 4CBA via 4-chlorocatechol to 5C-2HMS by meta-cleavage reaction and then to 5C-2HMA by 5C-2HMS dehydrogenase.

  • PDF

Cloning and Sequence Analysis of the xyIL Gene Responsible for 4CBA-Dihydrodiol Dehydrogenase from Pseudomonas sp. S-47

  • 박동우;이상만;가종옥;김지경
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.275-275
    • /
    • 2002
  • Pseudomonas sp. S-47 is capable of catabolizing 4-chlorobenzoate (4CBA) as carbon and energy sources under aerobic conditions via the mesa-cleavage pathway. 4CBA-dioxygenase and 4CBA-dihydrodiol dehydrogenase (4CBA-DD) catalyzed the degradation af 4CBA to produce 4-chlorocatechol in the pathway. In this study, the xylL gene encoding 4CBA-DD was cloned from the chromosomal DNA of Pseudomonas sp. S-47 and its nucleotide sequence was analyzed. The xylL gene was found to be composed of 777 nucleotide pairs and to encode a polypeptide of 28 kDa with 258 amino acid residues. The deduced amino acid sequence of the dehydrogenase (XylL) from strain S-47 exhibited 98% and 60% homologies with these of the corresponding enzymes, Pseudomonas putida mt-2 (XyIL) and Acinetobacter calcoaceticus (BenD), respectively. However, the amino arid sequences show 30% or less homology with those of Pseudomonas putida (BnzE), Pseudomonas putida Fl (TodD), Pseudomonas pseudoalcaligenes KF707 (BphB), and Pseudomonas sp. C18 (NahB). Therefore, the 4CBA-dihydrodiol dehdrogenase of strain S-47 belongs to the group I dehydrogenase involved in the degradation of mono-aryls with a carboxyl group.

Chemical Composition and Thermal Changes of Natural Pyrrhotite

  • Moon-Young Kim;Hong-Ja Shin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 1990
  • Compositions and thermal changes of pyrrhotites from Ohtani and Uljin mines were examined by Arnold's method and DTA analysis. The results are as follow: 1) The compositions of hexagonal type pyrrhotite are in some range from 47.23-47.42 atom.% Fe in the Ohtani mine, and 47.40-47.64 atom.% Fe in the Uljin mine. 2) The compositions of hexagonal pyrrhotite with exsoluted lamellae of monoclinic pyrrhotite are in 47.35-47.50 atom.% Fe in the Ohtani mine, and 47.15-47.40 atom.% Fe in the Uljin mine. This fact does not agree with phase diagrams of Fe-S system shown by Nakazawa and Morimoto(1970) and Sugaki and Shima(1977). 3) DTA data show two endothermic peak corresponding to ${\gamma}$ and $\beta$ transformation. Sturctural conversions from order(intermediate) to disorder(high) forms occur at about $300^{\circ}C$ for hexagonal type and further lower temperature with increasing Fe-content.

  • PDF