• Title/Summary/Keyword: S-Cam shaft

Search Result 17, Processing Time 0.034 seconds

The Forging Analysis of S/CAM Shaft to the Drum Brake (드럼브레이크 S/CAM 샤프트 단조 해석)

  • Kim, Mi-Ae;Sung, Back-Sub;Cha, Yong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1113-1118
    • /
    • 2008
  • In the hot forging process, The forging defects that are caused by metal were strain, temperate, and inclusion. In this paper, the computer simulation analyzed the effective plastic strain and temperature behaviors. The quantitative analyses which proposed the effective mold design of S/CAM shaft was executed. The parameters of forging shape that affected on the optimize conditions that was calculated with simple equation were investigated. it is expected that the developed analysis model and design technique would greatly contribute to the drum brake optimal design considering temperature affected and material behaviors. This development could save more than 20% of production cost and reduced failure rate to more than 30%. By improving the life span of mold from 15,000 to 25,000, financial difficulty of company imposed on a mold manufacture could be overcome.

  • PDF

The Experimental and Basic Study on Torsional Vibration of Horizontal Rotating Shaft using a Laser Measuring Equipment (레이저 계측기를 이용한 축의 비틀림 진동에 관한 실험적 기초 연구)

  • Park, I.S.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • In this study, the nose of cam in the automobile engine was modelled into circular disk to analyze the torsional vibration of the cam shaft. The distance between disks was fixed, but the diameter of disks was changed. The torsional vibration of the cam shaft was studied experimentally by the motion of the modelled disk with changing the disk diameter. And the sizes of the modelled disk were selected not to show the natural frequencies over all the experimental ranges. The torsional vibration meter used in this study has a laser system with non-contact measurement method, which can measure both torsional angular vibration velocity and torsional angular vibration displacement simultaneously. The Experimental analysis shows that the characteristics of the torsional vibration in the horizontal rotating shaft can be considerably affected by the arrangement of the modelled disks.

  • PDF

The Soundness Evaluation of Cam Shaft Moulding for the Commercial Vehicle Brake System (상용차 브레이크 캠샤프트 성형의 건전성 평가)

  • Cha, Yong-Hun;Sung, Back-Sub;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.60-66
    • /
    • 2011
  • In this paper, the computer simulation analyzed the effective plastic strain and temperature behaviors. The quantitative analyses which proposed the effective mold design of S/CAM shaft was executed. The parameters of forging shape that affected on the optimize conditions that was calculated with simple equation were investigated. it is expected that the developed analysis model and design technique would greatly contribute to the drum brake optimal design considering effective plastic strain and temperature affected behaviors. This development could save more than 20% of production cost and reduced failure rate to more than 30%. By improving the life span of mold from 15,000 to 25,000, financial difficulty of company imposed on a mold manufacture could be overcome.

An Experimental Study on the Tappet Spin for a Direct Acting Valve Train System (직접 구동형 밸브 트레인 시스템의 태핏 회전에 관한 실험적 연구)

  • Cho, Myung-Rae;Kim, Hyung-Jun;Moon, Tae-Seon;Han, Dong-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1179-1184
    • /
    • 2003
  • The technique for measuring the rotational speed of tappet in direct acting type valve train system has been developed. The optic signal monitoring system with laser and optic fiber was designed to follow the signal of tappet rotation. The system was based on ON/OFF signal generation from the additional encoder teeth under the tappet with optic fibers attached photo transistor. The data showed that tappet rotation was affected by offset, oil temperature and cam shaft operating speed. Also it was found that tappet rotation increases with oil temperature. Tappet spin was delayed 10∼s20$^{\circ}$ cam angle after valve opening. The instantaneous rotational speed of tappet was reciprocal to cam shaft speed and the tappet and the cam angle ratio was located in the range of 0.1∼0.3.

A Study on Mechanical Property of SM53C Steel by High Frequency Induction Hardening (고주파열처리 SM53C강의 기계적 성질에 관한 연구)

  • Kim, Hwang-Soo;Kim, Jung-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.7-15
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The Cam nose part of the Automobile's Cam shaft is strongly bumped with rocker arm or valve-lift. Therefore abnormal wear such as unfair wear and early wear occur in the surface. This abnormal wear causes a defect that bad timing open and close actions of the engine valve happen in the combustion chamber so the fuel gas will be combustion imperfect. Therefore, the cam shaft demands high hardness and wear resistance. In this study, high frequency heat treatment has been accomplished while wear test for material SM53C.

Study of Tolerance Suitability of Door Operation Mechanism on Mobile Air Handing Unit Using 3-DCS Analysis (3-DCS를 이용한 자동차 공기 분배장치의 도아 구동 기구의 공차 적합성 분석에 대한 연구)

  • Kim, Jongsu;Lee, Daewoong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.527-537
    • /
    • 2016
  • Recent automakers are trying to be more precise with the dimension check and moving parts to guarantee high quality and satisfy customer requirements. The aim of this paper is to investigate the design tolerance suitability of door operating mechanism linked arms, lever, and cam-shaft in a mobile air handling unit. These parts are complicated because doors, arms, lever and cam-shaft are connected nonlinearly in 3D. The current tolerance analysis method poses problems in design analysis because the moving doors are reasonably suitable for the AHU function. The 3-DCS analysis method provided useful results not only in establishing the inspection criteria for the quality control of products but also in enabling economical production. As a result, the vent door had $1.62^{\circ}{\sim}1.72^{\circ}$ and the defrost door had $0.84^{\circ}{\sim}0.9^{\circ}$ for the directly connected arms operating-type. For the lever connected arm operating-type, the foot door had $2.0^{\circ}{\sim}2.24^{\circ}$ tolerance, while the tolerance values satisfied the air flow volume distribution rate criteria in the AHU. Finally, the results have confirmed the design's tolerance suitability by using 3-DCS analysis at the early design stages. Reliability can be achieved by analyzing accumulated tolerance during the sub-parts assembly process and the moving mechanism linked especially by arms, lever, and cam-shaft.

Laser Welding Properties of the S45C using Automobile Brake Parts (자동차 브레이크 부품용 S45C 소재의 레이저 용접특성 평가)

  • Sim, Kijoong;Cho, Wonyoung;Kim, Youngkwan;Choi, Kyujae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.103-109
    • /
    • 2014
  • This paper represents the s-cam manufacturing process with the high-carbon steel like S45C using laser welding system. Laser welding of the high-carbon steel is generally difficult because of hardening of the weld zone. Also, existing s-cam manufacturing process, electric resistance welding system, have some problems like increase of production and development cost. To solve those problems, we are introduced the laser welding system with the pre-heating system for precision welding of s-cam with separated shaft and cam part. S-cam manufactured with optimum laser welding conditions is verified the performance like tensile strength, torsional strength and fatigue test. Strength and fatigue test results are described.

Measurement of the Torque for Driving Cam Shaft in Real Engine Environments (실 엔진 상태 캠 구동 토크 측정)

  • Kang, Seung-Pyo;Kauh, S.Ken;Ha, Kyoung-Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.242-247
    • /
    • 2007
  • Energy savings and environmental protection policies have been the general trend in the engine design. The friction power loss associated with the cam mechanism has become important. But it is difficult to measure the torque of rotating valvetrain in real engine environment because most of conventional torque meters are axial type. The objective of this paper is to develop new equipment which can be installed in a rotating camshaft. It uses strain gages to measure the elastic deformation of torque sensor which replaces the cam sprocket. It includes telemetry to transmit torque data via Bluetooth and induction power system to provide adequate power to rotating torque meter. The developed torque meter has good linearity and thermostability. It was installed in a real engine, and successfully measured the valvetrain torque.