• Title/Summary/Keyword: SBM co-polymer

Search Result 2, Processing Time 0.019 seconds

The electrochemical properties of $TiO_2$ photoanode using SBM co-polymer binders (SBM 고분자중합 바인더가 사용된 $TiO_2$ 광전극의 전기화학적 특성)

  • Jin, En-Mei;Park, Kyung-Hee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.360-361
    • /
    • 2008
  • A new kind of SBM co-polymer binder as styrene, n-butyl acrylate, and methacrylic acid (SBM) monodisperse co-polymer binder materials basted on $TiO_2$ pastes was synthesized and this $TiO_2$ pastes were applied of dye-sensitized solar cells (DSSCs). The SBM co-polymer binder was prepared by soap-free emulsion copolymerization using a PEG-EEM macromonomer. The photoanodes were characterized by morphology investigated from field emission scanning electron microscopy (FE-SEM). The photoelectrochemical properties of the thin films and the performance of DSSCs were measured by photovoltaic-current density. DSSC based on the emulsion co-polymer binder was obtained conversion efficiency of 7.1% under irradiation of AM 1.5($100mWcm^{-2}$).

  • PDF

Dye-sensitized solar cells using size dependent SBM binder

  • Park, Gyeong-Hui;Kim, Eun-Mi;Jo, Hong-Gwan;Wang, Gyo;Hong, Chang-Guk;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.116-116
    • /
    • 2009
  • $TiO_2$ pastes was synthesized to obtained of high efficiency dye-sensitized solar cells using size dependent co-polymer. SBM co-polymer binder is consist of styrene, n-butyl acrylate, and methacrylic acid (SBM) monodisperse co-polymer binder materials and this $TiO_2$ pastes were applied of dye-sensitized solar cells (DSSCs). The photoanodes were characterized by ATR-Fourier Transform spectrometer, X-ray diffraction (XRD) and morphology was investigated by field emission scanning electron microscopy (FE-SEM). The photoelectrochemical properties of the thin films and the performance of DSSCs were measured by photovoltaic-current density, AC impedance and monochromatic incident photon-to-current conversion efficiency (IPCE). DSSC based on the 100nm size co-polymer binder was obtained conversion efficiency of 8.1% under irradiation of AM 1.5(100 $mWcm^2$).

  • PDF