• Title/Summary/Keyword: SC composite column

Search Result 8, Processing Time 0.02 seconds

Experimental Study on the Fire Resistance of SC Composite Coloumn (SC 합성기둥의 내화성능에 대한 실험연구)

  • Lee, Sueng Jea;Kang, Seong Deok;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.425-434
    • /
    • 2007
  • The SC (steel-concrete) composite column was developed to take advantage of the relative economy of using concrete as opposed to steel in carrying large compressive forces. As the SC composite column is pre-fabricated, its use can minimize laborand can speed up the erection of a steel building. In this study, an experiment was conducted to analyze the influence of several parameters, such as the load ratio, the concrete ratio of an area, and its performance with or without fire protection, on the performance of the SC composite column. This paper proposes that the calculation of the strength reduction ratios of columns be done by increasing the temperature. Theoretical equations were used to evaluate the effectiveness of the fire resistance of the SC composite column, and the results of the test and analysis were compared. The fire resistance of the SC composite column was increased by decreasing its load ratio, but the concrete ratio of an area has minimal influence on the fire resistance of the SC composite column.

Experiment Study on the Flexural-Axial Capacity of Steel-Concrete Composite Column composed of Non-Compact Section (비조밀단면을 가진 SC 합성 기둥의 휨-압축 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Bum Rae;Kim, Myeong Han;Kim, Dae Joong;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.431-438
    • /
    • 2005
  • A steel-concrete composite column is a recently developed composite system in which the two opposite flanges of the H-shape section are connected by welded links, and the vacant space enclosed by the flanges, web, and links is filled with concrete. Previous experiments on the SC composite column were performed to evaluate its compression and bending and shear strengths, respectively, and they showed fairly good results. In addition to thesestudies, it may be necessary to evaluate the flexural-axial capacity of an SC composite column, because itscolumn members are generally subjected to axial force and bending moment at the same time. In this study, the bending strength of an SC composite column subjected to axial compression force was investigated experimentally. The results of the study showed that the AISC-LRFD provisions representedexcessively low values compared with those of the ACI, Eurocode-4, and Japan Code provisions. The Eurocode-4 provisions represented reasonable evaluations of the strength of the SC composite column composed of a non-compact section.

An Experimental Study on the Bending Capacities of Steel-Concrete Column under the Axial Load (축력을 받는 SC 기둥의 휨 성능에 관한 실험 연구)

  • Lee, Hwan Soo;Oh, Myoung Ho;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.87-96
    • /
    • 2003
  • The Ssteel-Cconcrete (SC) Ccomposite Ccolumn is a new Ccomposite Ccolunin system, where hoops are welded between flanges of H-shapesd steel and concrete is filled in spaces between flanges are filled with con crete. Tests of SC composite columns were performed previously to determine their compression, bending and shear strength, and it showed good structural behavior. But sSince a column is usually subjected to an axial compression force, and bending it ihas needed to be bent forevaluate its structural behavior to be evaluated when its axial load and bending isaresimultaneously applied to the SC composite column. In this paper, tests were conducted to investigate the bending strength of SC composite columns subjected to axial compression force and bending moment. The parameters of the tests were concrete, a stud bolt, a hoop and a magnitude of axial compression. The test results showed that the maximum bending strength and ductility of an SC composite column were increased by 33-42% and 33-63%, respectively, comparinged to those of a bare steel column. Also, the results obtained bywith the Korean Limit State Design Code (LSD) presents a considerably safe side value compared to those of the Eurocode-4 and the Japan Code. However, wWhen the axial compression force is was increased, however, there awere considerable differences between the maximum strength obtained by the test and the LSD analysis. For this reason, it is recommended tothe use of the Eurocode-4 is recommended when calculates the strength of an SC composite column is being calculated, since the Eurocode-4 gives us a better estimation.

Analytical Study on the Fire Resistance of SC Composite Column (SC 합성기둥의 내화성능에 대한 해석연구)

  • Lim, Yoon Hee;Kang, Seong Deok;Oh, Myoung Ho;Kim, Myeong Han;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.335-344
    • /
    • 2007
  • The steel-concrete composite column (i.e., the SC composite column) supports large-gravity loads and simplifies the installation and removal of the work in pouring the concrete. The column takes advantage of the in-plant prefabrication of steel, the speed of erection of a steel structure, and the fire resistance of steel. This paper presents the results of a parametric study using heat transfer analysis and a P-M interaction curve, and compares these results with the experimental results to check the accuracy of the proposed parametric studies. The parametric studies, such as the study of the concrete ratio of an area and the fire protection thickness, provide information on the fire resistance of SC composite columns.

Inelastic Analysis of Steel-Concrete Composite Column with Non-Compact Steel Section (비조밀단면을 가진 SC 합성 기둥의 비선형 해석)

  • Oh, Myoung Ho;Jang, Tae Young;Kim, Myeong Han;Kim, Dae Joong;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.63-71
    • /
    • 2005
  • There were already several studies conducted on the steel-concrete (SC) composite column, which was developedcomplement the weaknesses and maintain the advantages of previous composite columns. The axial compressive capacity of the SC composite column was estimated by the tests in previous studies, but the experiments for the large-scale column could not be performed because of the limitation with the laboratory's capacity. In this study, the analytical study was performed using the general finite element analysis program to reflect the interaction of concrete and steel and the local buckling of steel flange composed of the non-compact section. The appropriateness of the analytical model was verified by the comparison between experimental and analytical results. The nonlinear behavior of full-scale SC composite column was analyzed using the verified analytical model. From these analytical studies, it was concluded that the width-to-thickness ratio of the steel cross-section of the SC composite column should not exceed 25:0. The section area of the link is best when it is over 0.025 dt, and the link distance is to be less than D/2 or 300mm.

Experimental Investigation on Post-Fire Performances of Fly Ash Concrete Filled Hollow Steel Column

  • Nurizaty, Z.;Mariyana, A.A.K;Shek, P.N.;Najmi, A.M. Mohd;Adebayo, Mujedu K.;Sif, Mohamed Tohami M.A;Putra Jaya, Ramadhansyah
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.335-344
    • /
    • 2021
  • In structural engineering practice, understanding the performance of composite columns under extreme loading conditions such as high-rise bulding, long span and heavy loads is essential to accuratly predicting of material responses under severe loads such as fires or earthquakes. Hitherto, the combined effect of partial axial loads and subsequent elevated temperatures on the performance of hollow steel column filled fly ash concrete have not been widely investigated. Comprehensive test was carried out to investigate the effect of elevated temperatures on partial axially loaded square hollow steel column filled fly ash concrete as reported in this paper. Four batches of hollow steel column filled fly ash concrete ( 30 percent replacement of fly ash), (HySC) and normal concrete (CFHS) were subjected to four different load levels, nf of 20%, 30%, 40% and 50% based on ultimate column strength. Subsequently, all batches of the partially damage composite columns were exposed to transient elevated temperature up to 250℃, 450℃ and 650℃ for one hour. The overall stress - strain relationship for both types of composited columns with different concrete fillers were presented for each different partial load levels and elevated temperature exposure. Results show that CFHS column has better performance than HySC at ambient temperature with 1.03 relative difference. However, the residual ultimate compressive strength of HySC subjected to partial axial load and elevated temperature exposure present an improvement compared to CFHS column with percentage difference in range 1.9% to 18.3%. Most of HySC and CFHS column specimens failed due to local buckling at the top and middle section of the column caused by concrete crushing. The columns failed due to global buckling after prolong compression load. After the compression load was lengthened, the columns were found to fail due to global buckling except for HySC02.

Cyclic Test of welding connections for Steel-Plate Concrete Column to H-shaped Steel Girders (강판 콘크리트(SC) 기둥과 H형강 보의 용접 접합부에 대한 반복 이력 실험)

  • Park, Ho Young;Kang, Cheol Kyu;Choi, Byong Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2014
  • This study presents an experimental study of the structural behavior for steel plate-concrete column-to-steel girder connections. Experiments were carried out to investigate the moment-rotation characteristics, failure behavior and ultimate moment capacity of these connections. The results of this experimental study involving three welded moment-resisting connections subjected to cyclic loading are presented. The specimens were fabricated at full scale to evaluate their hysteretic behavior. A description of the test specimens, the details of the joint, the test system and the testing methods are described. The test results showed that the structural behavior of these composite connections was influenced by the connection details.

Evaluation of Progressive Collapse Resistance of Steel Moment Frame with WUF-B Connection and Composite Slab using Equivalent Energy-based Static Analysis (WUF-B 접합부 및 합성슬래브로 설계된 철골모멘트골조의 에너지 기반 근사해석을 이용한 연쇄붕괴 저항성능 평가)

  • Noh, Sam-Young;Park, Ki-Hwan;Hong, Seong-Cheol;Lee, Sang-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • The progressive collapse resistance performance of a steel structure constructed using the moment frame with the WUF-B connection and the composite slabs was evaluated. GSA 2003 was adapted for the evaluation. Additionally the structural robustness and the sensitivity against the progressive collapse were analyzed. In the numerical analysis, a reduced model comprised of the beam and spring elements for WUF-B connection was adapted. The composite slab was modeled using the composite-shell element. Instead of the time-consuming dynamic analysis for the effect of the sudden column removal, the equivalent energy-based static analysis was effectively applied. The analysis results showed that the structure was the most vulnerable to in the case of the internal column removal, however it satisfied the chord rotation criterion of GSA 2003 due to the contribution of the composite slab which improved the stiffness of structure. In the robustness evaluation, the structural performance showed more than 2.5 times of the requirement according to GSA 2003, and the structural sensitivity analysis indicated the decrease of 33% of the initial structural performance.