• Title/Summary/Keyword: SFRC

Search Result 209, Processing Time 0.029 seconds

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.

Flexural Analysis of Steel Fiber Rreinforced Concrete Beam (강섬유 보강 콘크리트 보의 휨 해석)

  • 이차돈
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • An analytical simulation of the flexural behavior of SFRC beam has been illustrated. Curvature distributions and crack opening in critical region were taken into account. Compressive and tensile constitutive models which express post-peak behavior of SFRC with stress-crack opening relationships were incorporated in simulating nonlinear flexural behavior of the beam. The model was able to predict test results with reasonable accuracy. Behavior of the critical section and effects of different factors m the flexural behavior of SFRC beam were investigated. Simple observation and statistical approach have been made in selecting most influential parameters in flexural behavior of SFRC.

  • PDF

System Identification on Flexure of SFRC (SFRC 휨거동에의 system identification)

  • 이차돈
    • Computational Structural Engineering
    • /
    • v.4 no.3
    • /
    • pp.99-106
    • /
    • 1991
  • Flexural load-deflection relationships for steel fiber reinforced concrete(SFRC) are dependent on the tensile and compressive constitutive behaviors of the material, which may be refined in the presence of strain gradients under flexural loads. Considering the relatively large amount of flexural test results available for steel fiber reinforced concrete, and the relative ease of conducting such tests in comparison with direct tension tests, it seems to be important to obtain basic information on the tensile constitutive behavior of SFRC from the result of flexural tests. For this purpose "System Identification" technique was used for interpretating the flexural test data and it was successful in obtaining optimum sets of main parameters which explain the tensile constitutive behavior of SFRC under flexure.

  • PDF

Fracture property of steel fiber reinforced concrete at early age

  • Fu, Chuan-Qing;Ma, Qin-Yong;Jin, Xian-Yu;Shah, A.A.;Tian, Ye
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.31-47
    • /
    • 2014
  • This research is focused on obtaining the fracture property of steel fiber reinforced concrete(SFRC) specimens at early ages of 1, 2, 3 and 7-day, respectively. For this purpose, three point bending tests of nine groups of SFRC beams with notch of 40mm depth and different steel fiber ratios were conducted. The experimental results of early age specimens were compared with the 28-day hardened SFRC specimens. The test results indicated that the steel fiber ratios and curing age significantly influenced the fracture properties of SFRC. A reasonable addition of steel fiber improved the fracture toughness of SFRC, while the fracture energy of SFRC developed with curing age. Moreover, a quadratic relationship between splitting strength and fracture toughness was established based on the experiment results. Additionally, afinite element (FE) method was used to investigate the fracture properties of SFRC.A comparison between the FE analysis and experiment results was also made. The numerical analysis fitted well with the test results, and further details on the failure behaviors of SFRC could be revealed by the suggested numerical simulation method.

Analysis on the Tensile Fracture Behavior of SFRC (SFRC의 인장 파괴거동에 대한 해석)

  • 김규선;이차돈;심종성;최기봉;박제선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.65-72
    • /
    • 1993
  • Steel fiber reinforced concrete(SFRC) which is made by short, randomly distributed steel fibers in concrete is superior in its tensile mechanical properties to plain concrete in enhancement of tensile strength and tensile ductility. These improvements are attributed to crack arresting mechanism and formation of longer crack paths due to fibers , which as a consequence lead to increase in energy absorption capacity of SFRC. In the post-peak region under tensile stresses, major macrocrack forms at critical section. The opening of this macrocrack is mainly resisted by both of the fiber pull-out bridging the cracked surfaces and the resistance by matrix softening. In this study, micromechaincal approach has been made in order to simulate tensile behavior of SFRC and based on which the theoretical model is presented. This model reflects the features of both the composite material concept and the spacing concept in predicting tensile strength of SFRC. The model also takes into account for the effects of matrix tensile softening and fiber bridging by pull-out on the resistance for the post-peak behavior of SFRC. It has been shown that the developed model satisfactory predicts the experimental results.

  • PDF

Strength Reliability Analysis of Continuous Steel Fiber Reinforced Concrete Beam (강섬유 보강 철근콘크리트 연속보의 강도신뢰성 해석)

  • 유한신;곽계환;조효남
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.267-273
    • /
    • 2003
  • Steel fiber may be used to raise the effectiveness and safety of reinforced concrete structure and to relax its brittle-fracture behavior. However it is to be clearly stated that the uncertainty for the strength of fiber reinforced concrete(SFRC) is rather increased. Therefore, it is necessary to evaluate the safety of SFRC beam using reliability analysis incorporating realistic uncertainty. This study presents the statistical data and proposes the limit state model to analyze the reliability of SFRC bear In order to verify the efficiency of the proposed limit state model, its numerical application and sensitivity analysis were performed for a continuous SFRC beam. From the results of the numerical analysis, it is founded that the reliability of SFRC beam is significantly difficult from the conventional RC beams and proposed limit state model (or SFRC beam is more rational compared with that for conventional RC beams. Then it may be stated that the reliability analysis of SFRC beams must be carried out for the development of design criteria and the safety assessment.

  • PDF

An Experimental Study on the Durability and Dryng Shrinkage of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 내구성 및 건조수축변형 특성에 관한 실험적 연구)

  • 박승범;윤의식;홍석주;박병철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.80-83
    • /
    • 1995
  • In order to develope and apply high-performance steel fiber reinforced concrete (SFRC), the effects of steel fibers on durability and long-term deformation of SFRC due to various mixing conditions have been studied. As the test result show, the manufacturing process technology of industrial SFRC is developed And the durability of SFRC such as freeze-thaw, resisteance abrasion resistance are significantly improved, the drying shrinkage of SFRC, is remarkably decreased by increasing the steel fiber contents than plain concrete

  • PDF

강섬유 보강 콘크리트의 물성과 응용

  • 이차돈
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.4-9
    • /
    • 1994
  • 강섬유 보강 콘크리트는 콘크리트 내에 강섬유를 임의로 투입함으로써 취성의 콘크리트 물성을 연성적으로 향상시킴과 동시에 압축, 인장, 휨 강도를 증가시킨 새로운 구조 신소재라고 할 수 있다. 과거 70년대가 SFRC의 재료적 물성에 대한 실험적 시기였던 반면 현재는 현장에 SFRC를 시공하는 응용단계라 할 수 있다. SFRC의 우수성은 선진 외국의 경우 일반적으로 기업, 정부, 계약관계자 등에게 잘 인식되어 있어 이미 많은 시공현장에서 응용되고 있다. 이로 인하여 외국(미국, 일본, 유럽 등)의 경우 구조적으로 안정되고 경제적인 구조물을 실현하고 있으나 국내의 경우는 안타깝게도 SFRC에 대한 인식이 아직 일반화되어 있지 않으며 시공현장도 매우 드문 실정이다. SFRC에대한 연구는 국.내외 학회에서 꾸준히 연구, 개발하고 있으며 이들 연구결과가 경제적이고 우수한 구조물을 실현하는데 기여할 수 있기를 기대한다.

  • PDF

Performance evaluation of SFRC for tunnel segments based on large beam test (대형보 실험을 통한 TBM 터널 세그먼트용 강섬유보강콘크리트 성능평가)

  • Moon, Do-Young;Roh, Hwasung;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.287-298
    • /
    • 2014
  • In order to develop SFRC TBM tunnel segment, evaluating the SFRC mixture was conducted through flexural tests of SFRC beams without ordinary steel reinforcement in this study. Considered variables were compressive strengths of SFRC, aspect and mix ratio of steel fibers and total 16 specimens were fabricated and tested until failure. The load-vertical displacement results demonstrates that the effect of aspect ratio is minor when compared to results form small beam test(Moon et al, 2013). A SFRC beam resists the vertical load until the width of crack reaches to 7 mm due to steel fibers across cracked surfaces. Moreover, it is found that flexural moment estimated by equation of TR No. 63(Concrete Society, 2011) is useful for prediction of nominal strength for SFRC structure. From the investigation of fiber distribution in cracked section, it is found that dispersion improved in actual size beam compared to in standard small beam for evaluation of flexural strength.

The effects of stirrups and the extents of regions used SFRC in exterior beam-column joints

  • Gencoglu, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.27 no.2
    • /
    • pp.223-241
    • /
    • 2007
  • Seven full-scale exterior beam-column joints were produced and tested under reversible cyclic loads to determine. Two of these seven specimens were produced using ordinary reinforced concrete (RC). Steel Fiber Reinforced Concrete (SFRC) was placed in three different regions of the beams of the rest five specimens to determine the extent of the region where SFRC is the most effective. The extent of the region of SFRC was kept constant at the columns of all five specimens. Three of these five specimens which had one stirrup in the joint, were tested to evaluate the effect of the stirrup on the behavior of the beam-column joint together with SFRC. In production of the specimens with SFRC, all special requirements of the Turkish Earthquake Code related to the spacing of hoops were disregarded. Previous researches reported in the literature indicate that the fiber type, the volume content, and the aspect ratio of steel fibers affect the behavior of beam-column joints produced with SFRC. The results of the present investigation show that the behavior of exterior beam-column joints depends on the extent of the region where SFRC is used and the usage of stirrup in the joint, in addition to the parameters listed in the literature.