• Title/Summary/Keyword: SGOI MOSFET

Search Result 11, Processing Time 0.028 seconds

Dependency of Phonon-limited Electron Mobility on Si Thickness in Strained SGOI (Silicon Germanium on Insulator) n-MOSFET (Strained SGOI n-MOSFET에서의 phonon-limited전자이동도의 Si두께 의존성)

  • Shim Tae-Hun;Park Jea-Gun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.9-18
    • /
    • 2005
  • To make high-performance, low-power transistors beyond the technology node of 60 nm complementary metal-oxide-semiconductor field-effect transistors(C-MOSFETs) possible, the effect of electron mobility of the thickness of strained Si grown on a relaxed SiGe/SiO2/Si was investigated from the viewpoint of mobility enhancement via two approaches. First the parameters for the inter-valley phonon scattering model were optimized. Second, theoretical calculation of the electronic states of the two-fold and four-fold valleys in the strained Si inversion layer were performed, including such characteristics as the energy band diagrams, electron populations, electron concentrations, phonon scattering rate, and phonon-limited electron mobility. The electron mobility in an silicon germanium on insulator(SGOI) n-MOSFET was observed to be about 1.5 to 1.7 times higher than that of a conventional silicon on insulator(SOI) n-MOSFET over the whole range of Si thickness in the SOI structure. This trend was good consistent with our experimental results. In Particular, it was observed that when the strained Si thickness was decreased below 10 nm, the phonon-limited electron mobility in an SGOI n-MOSFT with a Si channel thickness of less than 6 nm differed significantly from that of the conventional SOI n-MOSFET. It can be attributed this difference that some electrons in the strained SGOI n-MOSFET inversion layer tunnelled into the SiGe layer, whereas carrier confinement occurred in the conventional SOI n-MOSFET. In addition, we confirmed that in the Si thickness range of from 10 nm to 3 nm the Phonon-limited electron mobility in an SGOI n-MOSFET was governed by the inter-valley Phonon scattering rate. This result indicates that a fully depleted C-MOSFET with a channel length of less than 15 m should be fabricated on an strained Si SGOI structure in order to obtain a higher drain current.

Electrical characteristics of SGOI MOSFET with various Ge mole fractions (Ge 농도에 따른 SGOI MOSFET의 전기적 특성)

  • Oh, Jun-Seok;Kim, Min-Soo;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.101-102
    • /
    • 2009
  • SGOI MOSFETs with various Ge mole fractions were fabricated and compared to the SOI MOSFET. SGOI MOSFETs have a lager drain current and higher effective mobility than the SOI MOSFET as increased Ge mole fractions. The lattice constant difference causes lattice mismatch between the SiGe layer and the top-Si layer during the top-Si layer growth. However, SGOI MOSFETs have a lager leakage current at subthreshold region. Also, leakage current at subthreshold region increased with Ge mole fractions. This is attributable to the crystalline defects due to the lattice mismatch between the SiGe layer and the top-Si layer.

  • PDF

Evaluation of SGOI wafer with different concentrations of Ge using pseudo-MOSFET (Pseudo-MOSFET을 이용한 SiGe-on-SOI의 Ge 농도에 따른 기판의 특성 평가 및 열처리를 이용한 전기적 특성 개선 효과)

  • Park, Goon-Ho;Jung, Jong-Wan;Cho, Won-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.156-159
    • /
    • 2008
  • The electrical characteristic of SiGe-on-SOI (SGOI) wafer with different Ge concentration were evaluated by pseudo-MOSFET. Epitaxial SiGe layers was grown directly on top of SOI with Ge concentrations of 16.2, 29.7, 34.3 and 56.5 at.%. As Ge concentration increased, leakage current increased and threshold voltage shifted from 3 V to 7 V in nMOSFET, from -7 V to -6 V in pMOSFET. The interface states between buried oxide and top of Si was significantly increased by the rapid thermal annealing (RTA) process, and so the electrical characteristic of SGOI wafer degraded. On the other hand, additional post RTA annealing (PRA) showed that it was effective in decreasing the interface states generated by RTA processes and the electrical characteristic of SGOI wafer enhanced higher than initial state.

Improvement of Carrier Mobility on Silicon-Germanium on Insulator MOSFET Devices with a Strained-Si Layer

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.399-402
    • /
    • 2007
  • The effects of heat treatment on the electrical properties of strained-Si/SiGe-on-insulator (SGOI) devices were examined. We proposed the optimized heat treatment processes for improving the back interfacial electrical properties in SGOI-MOSFET. By applying the additional pre-RTA (rapid thermal annealing) before gate oxidation step and the post-RTA after source/drain dopant activation step, the electrical properties of strained-Si channel on $Si_{1-x}Ge_x$ layer were greatly improved, which resulting the improvement of the driving current, transconductance, and leakage current of SGOI-MOSFET.

Improvement of carrier mobility on Silicon-Germanium on Insulator MOSFEI devices with a Si-strained layer (Si-strained layer를 가지는 Silicon-Germanium on Insulator MOSFET에서의 이동도 개선 효과)

  • Cho, Won-Ju;Koo, Hyun-Mo;Lee, Woo-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.7-8
    • /
    • 2006
  • The effects of heat treatment on the electrical properties of SGOI were examined. We proposed the optimized heat treatments for improving the interfacial electrical properties in SGOI-MOSFET. By applying the additional pre-RTA(rapid thermal annealing) before gate oxidation and post-RTA after dopant activation, the driving current, the transconductance, and the leakage current were improved significantly.

  • PDF

Effect of Ge mole fraction and Strained Si Thickness on Electron Mobility of FD n-MOSFET Fabricated on Strained Si/Relaxed SiGe/SiO2/Si (Strained Si/Relaxed SiGe/SiO2/Si 구조 FD n-MOSFET의 전자이동에 Ge mole fraction과 strained Si 층 두께가 미치는 영향)

  • 백승혁;심태헌;문준석;차원준;박재근
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.10
    • /
    • pp.1-7
    • /
    • 2004
  • In order to enhance the electron mobility in SOI n-MOSFET, we fabricated fully depletion(FD) n-MOSFET on the strained Si/relaxed SiGa/SiO$_2$/Si structure(strained Si/SGOI) formed by inserting SiGe layer between a buried oxide(BOX) layer and a top silicon layer. The summated thickness of the strained Si and relaxed SiGe was fixed by 12.8 nm and then the dependency of electron mobility on strained Si thickness was investigated. The electron mobility in the FD n-MOSFET fabricated on the strained Si/SGOI enhanced about 30-80% compared to the FD n-MOSFET fabricated on conventional SOI. However, the electron mobility decreased with the strained Si thickness although the inter-valley phonon scattering was reduced via the enhancement of the Ge mole fraction. This result is attributed to the increment of intra-valley phonon scattering in the n-channel 2-fold valley via the further electron confinement as the strained Si thickness was reduced.

Memory characteristics of SGOI (Silicon-Germanium-On-Insulator) 1T-DRAM with various Ge mole fractions (Ge 농도에 따른 SGOI (Silicon-Germanium-On-Insulator) 1T-DRAM의 메모리 특성)

  • Oh, Jun-Seok;Kim, Min-Soo;Jung, Jong-Wan;Lee, Young-Hie;Chung, Hong-Bay;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.99-100
    • /
    • 2009
  • SGOI 1T-DRAM cells with various Ge mole fractions were fabricated and compared to the SOI 1T-DRAM cell. SGOI 1T-DRAM cells have a higher leakage current than SOI 1T-DRAM cell at subthreshold region. The leakage current due to crystalline defects and interface states at Si/SiGe increased with Ge mole. This phenomenon causes sensing margin and the retention time of SGOI 1T-DRAMs decreased with increase of Ge mole fraction.

  • PDF

Analog performances of SGOI MOSFET with Ge mole fraction (Ge mole fraction에 따른 SGOI MOSFET의 아날로그 특성)

  • Lee, Jae-Ki;Kim, Jin-Young;Cho, Won-Ju;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.5
    • /
    • pp.12-17
    • /
    • 2011
  • In this work, the analog performances of n-MOSFET fabricated on strained-Si/relaxed Si buffer layer with Ge mole fractions and thermal annealing temperatures after device fabrication have been characterized in Depth. The effective electron mobility was increased with the increase of Ge mole fraction for all annealing temperatures. However the effective electron mobility was decreased at the Ge mole fraction of 32%. The analog performances were enhanced with the increase of Ge mole fraction at the room temperature but they were degraded at the Ge mole fraction of 32%. Since the degradation of the effective electron mobility of strained-Si layer is more significant than one of conventional Si layer at elevated temperature, the degradation of analog performances of SGOI devices were increased than those of SOI devices.

Performance of Capacitorless 1T-DRAM Using Strained-Si Channel Effect

  • Jeong, Seung-Min;O, Jun-Seok;Kim, Min-Su;Jeong, Hong-Bae;Lee, Yeong-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.130-130
    • /
    • 2011
  • 최근 반도체 메모리 산업의 발전과 동시에 발생되는 문제들을 극복하기 위한 새로운 기술들이 요구되고 있다. DRAM (dynamic random access memory) 의 경우, 소자의 크기가 수십 나노미터 영역으로 줄어들면서, 단채널 효과에 의한 누설전류와 소비전력의 증가 등이 문제가 되고 있다. 하나의 캐패시터와 하나의 트랜지스터로 구성된 기존의 DRAM은, 소자의 집적화가 진행 되어 가면서 정보저장 능력이 감소하는 것을 개선하기 위해, 복잡한 구조의 캐패시터 영역을 요구한다. 이에 반해 하나의 트랜지스터로 구성되어 있는 1T-DRAM의 경우, 캐패시터 영역이 없는 구조적인 이점과, SOI (silicon-on-insulator) 구조의 기판을 사용함으로써 뛰어난 전기적 절연 특성과 기생 정전용량의 감소, 그리고 기존 CMOS (complementary metal oxide semiconductor) 공정과의 호환성이 장점이다. 또한 새로운 물질 혹은 구조를 적용하여, 개선된 전기적 특성을 통해 1T-DRAM의 메모리 특성을 향상 시킬 수 있다. 본 연구에서는, SOI와 SGOI (silicon-germanium-on-insulator) 및 sSOI (strained-si-on-insulator) 기판을 사용한 MOSFET을 통해, strain 효과에 의한 전기적 특성 및 메모리 특성을 평가 하였다. 그 결과 strained-Si층과 relaxed-SiGe층간의 tensile strain에 의한 캐리어 이동도의 증가를 통해, 개선된 전기적 특성 및 메모리 특성을 확인하였다. 또한 채널층의 결함이 적은 sSOI 기판을 사용한 1T-DRAM에서 가장 뛰어난 특성을 보였다.

  • PDF

DC Characteristic of Silicon-on-Insulator n-MOSFET with SiGe/Si Heterostructure Channel (SiGe/Si 이종접합구조의 채널을 이용한 SOI n-MOSFET의 DC 특성)

  • Choi, A-Ram;Choi, Sang-Sik;Yang, Hyun-Duk;Kim, Sang-Hoon;Lee, Sang-Heung;Shim, Kyu-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.99-100
    • /
    • 2006
  • Silicon-on-insulator(SOI) MOSFET with SiGe/Si heterostructure channel is an attractive device due to its potent use for relaxing several limits of CMOS scaling, as well as because of high electron and hole mobility and low power dissipation operation and compatibility with Si CMOS standard processing. SOI technology is known as a possible solution for the problems of premature drain breakdown, hot carrier effects, and threshold voltage roll-off issues in sub-deca nano-scale devices. For the forthcoming generations, the combination of SiGe heterostructures and SOI can be the optimum structure, so that we have developed SOI n-MOSFETs with SiGe/Si heterostructure channel grown by reduced pressure chemical vapor deposition. The SOI n-MOSFETs with a SiGe/Si heterostructure are presented and their DC characteristics are discussed in terms of device structure and fabrication technology.

  • PDF