• Title/Summary/Keyword: SH-SY5Y cell line

Search Result 44, Processing Time 0.028 seconds

Identification of Genes Associated with Early and Late Response of Methylmercury in Human Neuroblastoma Cell Line

  • Kim, Youn-Jung;Kim, Mi-Soon;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.2
    • /
    • pp.164-169
    • /
    • 2008
  • Methylmercury (MeHg) is known to have devastating effects on the mammalian nervous system. In order to characterize the mechanism of MeHg-induced neurotoxicity, we investigated the analysis of transcriptional profiles on human 8k cDNA microarray by treatment of $1.4{\mu}M$ MeHg at 3, 12, 24 and 48h in human neuroblastoma SH-SY5Y cell line. Some of the identified genes by MeHg treatment were significant at early time points (3h), while that of others was at late time points (48h). The early response genes that may represent those involved directly in the MeHg response included pantothenate kinase 3, a kinase (PRKA) anchor protein (yotiao) 9, neurotrophic tyrosine kinase, receptor, type 2 gene, associated with NMDA receptor activity regulation or perturbations of central nervous system homeostasis. Also, when SH-SY5Y cells were subjected to a longer exposure (48h), a relative increase was noted in a gene, glutamine-fructose-6-phosphate transaminase 1, reported that overexpression of this gene may lead to the increased resistance to MeHg. To confirm the alteration of these genes in cultured neurons, we then applied real time-RT PCR with SYBR green. Thus, this result suggests that a neurotoxic effect of the MeHg might be ascribed that MeHg alters neuronal receptor regulation or homeostasis of neuronal cells in the early phase. However, in the late phase, it protects cells from neurotoxic effects of MeHg.

Clostridium difficile Toxin A Induces Reactive Oxygen Species Production and p38 MAPK Activation to Exert Cellular Toxicity in Neuronal Cells

  • Zhang, Peng;Hong, Ji;Yoon, I Na;Kang, Jin Ku;Hwang, Jae Sam;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1163-1170
    • /
    • 2017
  • Clostridium difficile releases two exotoxins, toxin A and toxin B, which disrupt the epithelial cell barrier in the gut to increase mucosal permeability and trigger inflammation with severe diarrhea. Many studies have suggested that enteric nerves are also directly involved in the progression of this toxin-mediated inflammation and diarrhea. C. difficile toxin A is known to enhance neurotransmitter secretion, increase gut motility, and suppress sympathetic neurotransmission in the guinea pig colitis model. Although previous studies have examined the pathophysiological role of enteric nerves in gut inflammation, the direct effect of toxins on neuronal cells and the molecular mechanisms underlying toxin-induced neuronal stress remained to be unveiled. Here, we examined the toxicity of C. difficile toxin A against neuronal cells (SH-SY5Y). We found that toxin A treatment time- and dose-dependently decreased cell viability and triggered apoptosis accompanied by caspase-3 activation in this cell line. These effects were found to depend on the up-regulation of reactive oxygen species (ROS) and the subsequent activation of p38 MAPK and induction of $p21^{Cip1/Waf1}$. Moreover, the N-acetyl-$\text\tiny L$-cysteine (NAC)-induced down-regulation of ROS could recover the viability loss and apoptosis of toxin A-treated neuronal cells. These results collectively suggest that C. difficile toxin A is toxic for neuronal cells, and that this is associated with rapid ROS generation and subsequent p38 MAPK activation and $p21^{Cip1/Waf1}$ up-regulation. Moreover, our data suggest that NAC could inhibit the toxicity of C. difficile toxin A toward enteric neurons.

Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells

  • Seung Yeon Sohn;Thin Thin San;Junhyung Kim;Hyun-Jung Kim
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.65-76
    • /
    • 2024
  • Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.

Identification of differentially expressed Genes by methyl mercury in neuroblastoma cell line using SSH

  • Kim, Youn-Jung;Chang, Suk-Tai;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.167-167
    • /
    • 2002
  • Methylmercury (MeHg), one of the heavy metal compound, can cause severe damage to the central nervous system in humans. Many reports have contributed MeHg poisoning to contaminated foods and release into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established. To find genes differentially expressed by MeHg in neuronal cell, we peformed forward and reverse suppression subtractive hybridization (SSH) method on mRNA derived from neuroblastoma cell line, SH-SY5Y treated with solvent (DMSO) and 6.25 uM (IC$\sub$50/) MeHg. Differentially expressed CDNA clones were sequenced and the mRNAs were re-examined on Northern blots. These sequences were identified by BLAST homology search to known genes or expressed sequence tags (ESTs). Analysis of these sequences has provided an insight into the biological effects of MeHg in the pathogenesis of neurodegenerative disease and a possibility to develop more efficient and exact monitoring system of heavy metals as common environmental pollutants.

  • PDF

Effect of Immature Citrus sunki Peel Extract on Neuronal Cell Death (미성숙 진귤 과피 추출물이 신경세포 사멸에 미치는 영향)

  • Ko, Woon Chul;Lee, Sun Ryung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.2
    • /
    • pp.144-149
    • /
    • 2015
  • The peel of Citrus sunki exhibits multiple biological activities such as anti-oxidant, anti-inflammation and anti-obesity, but little is known about neurodegeneration-related activities. In this study, we investigated the protective effect of ethanolic extract from both immature and mature Citrus sunki peel on neuronal cell death. Treatment of the neuroblastoma cell line SH-SY5Y with $MPP^+$, an inducer of Parkinson disease model, increased cell death in a dose dependent manner. Increased levels of active caspase-3 and cleaved PARP were detected. Treatment with immature Citrus sunki peel extract significantly reduced $MPP^+$-induced neurotoxicity. Cytoprotection with immature Citrus sunki peel extract was associated with a decrease in caspase-3 activation and PARP cleavage. In contrast, mature Citrus sunki peel extract had no significant effects. These data suggest that immature Citrus sunki peel extract may exert anti-apoptotic effect through the inhibition of caspase-3 signaling pathway on $MPP^+$-induced neuronal cell death.

Propranolol Inhibits the Proliferation of Human Glioblastoma Cell Lines through Notch1 and Hes1 Signaling System

  • Kim, Hyun Sik;Park, Young Han;Lee, Heui Seung;Kwon, Mi Jung;Song, Joon Ho;Chang, In Bok
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.716-725
    • /
    • 2021
  • Objective : The anti-tumor effect of the beta-adrenergic receptor antagonist propranolol in breast cancer is well known; however, its activity in glioblastoma is not well-evaluated. The Notch-Hes pathway is known to regulate cell differentiation, proliferation, and apoptosis. We investigated the effect of propranolol to human glioblastoma cell lines, and the role of Notch and Hes signaling in this process. Methods : We performed immunohistochemical staining on 31 surgically resected primary human glioblastoma tissues. We also used glioblastoma cell lines of U87-MG, LN229, and neuroblastoma cell line of SH-SY5Y in this study. The effect of propranolol and isoproterenol on cell proliferation was evaluated using the MTT assay (absorbance 570 nm). The impact of propranolol on gene expression (Notch and Hes) was evaluated using real-time polymerase chain reaction (RT-PCR, whereas protein levels of Notch1 and Hes1 were measured using Western blotting (WB), simultaneously. Small interfering RNA (siRNA) was used to suppress the Notch gene to investigate its role in the proliferation of glioblastoma. Results : Propranolol and isoproterenol caused a dose-dependent decrease in cell proliferation (MTT assay). RT-PCR showed an increase in Notch1 and Hes1 expression by propranolol, whereas WB demonstrated increase in Notch1 protein, but a decrease in Hes1 by propranolol. The proliferation of U87-MG and LN229 was not significantly suppressed after transfection with Notch siRNA. Conclusion : These results demonstrated that propranolol suppressed the proliferation of glioblastoma cell lines and neuroblastoma cell line, and Hes1 was more closely involved than Notch1 was in glioblastoma proliferation.

Protective Effect of Gastrodia Elata on Neuronal Cell Damage in Alzheimer's Disease (치매병태(癡呆病態)모델에서 천마(天麻)의 신경세포(神經細胞) 손상(損傷) 보호효과(保護效果))

  • Jung, Young-Su;Kang, Jae-Hyun;Prak, Se-Hwan;Kwon, Young-Mi;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.2
    • /
    • pp.125-140
    • /
    • 2010
  • Objectives : The purpose of this study is to examine from various angles the protective effect of Gastrodia elata Blume (GEB) against nerve cell death induced by $\beta$-amyloid by using the cell line SH-SY5Y, which is commonly utilized for toxicity testing in nerve cells, and to find out its mechanism of action. Methods : To begin with, as a result of assessing the rate of cell survival by employing MTT reduction assay, the treatment with $\beta$-amyloid at different concentrations caused cytotoxicity, which was inhibited by preprocessing GEB extract. In addition, after $\beta$-amyloid was processed with the cell SH-SY5Y, apoptosis progressed, which was reduced effectively by processing GEB extract. Results : When cytotoxicity was caused by using hydrogen peroxide, a representative ROS, in order to examine the antioxidant effect of GEB, its protective effect was also observed. Apart from ROS, reactive nitrogen species (RNS) are also known to play a crucial role in nerve cell death. The treatment with the NO donor SNAP increased the production of nitric oxide and the expression of iNOS, which was also inhibited by GEB extract. Meanwhile, as an attempt to find out the mechanism of action explaining the antioxidant effect, the intracellular antioxidant enzyme expressions were measured by RT-PCR, which showed that GEB extract increased the expressions of heme oxygenase-1, GAPDH and $\gamma$-glutamate cysteine ligase. Lastly, GEB extract had a protective effect against impaired memory induced by scopolamine in animal models (in vivo). Conclusions : These findings indicate that GEB has a protective effect against the death of cranial nerve cells, suggesting possibilities for the prevention and treatment of AD.

A Toxicogenomic Study to Assess Methylmercury-induced Neurotoxicity

  • Kim, Youn-Jung;Yun, Hye-Jung;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.177-177
    • /
    • 2003
  • Methylmercury (MeHg) is a well-known neurotoxicant that causes severe damage to the central nervous system in humans. Many reports have shown that MeHg is poisonous to human body through contaminated foods and has released into the environment. Despite many studies on the pathogenesis of MeHg-induced central neuropathy, no useful mechanism of toxicity has been established so far. In this study, suppressive subtractive hybridization (SSH) was performed to identify differentially expressed genes on human neuroblastoma cell line, SH-SY5Y treated with DMSO and MeHg (6.25 uM) for 6 hr. Differentially expressed cDNA clones were sequenced and were screened by dot blot to eliminate false positive clones. 13 of 35 screened genes were confirmed using real time RT-PCR. These genes include EB1,90-kDa heat-shock protein, chromosome condensation-related SMC-associated protein and brain peptide Al, etc. Analysis of these genes may provide an insight into the neurotoxic effects of MeHg in human neuronal cells and a possibility to develop more efficient and exact monitoring system of heavy metals as ubiquitous environmental pollutants.

  • PDF

Preventive effects of nano-graphene oxide against Parkinson's disease via reactive oxygen species scavenging and anti-inflammation

  • Hee-Yeong Kim;Hyung Ho Yoon;Hanyu Seong;Dong Kwang Seo;Soon Won Choi;Jaechul Ryu;Kyung-Sun Kang;Sang Ryong Jeon
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.202-207
    • /
    • 2023
  • We investigated the neuroprotective effects of deca nano-graphene oxide (daNGO) against reactive oxygen species (ROS) and inflammation in the human neuroblastoma cell line SH-SY5Y and in the 6-hydroxydopamine (6-OHDA) induced Parkinsonian rat model. An MTT assay was performed to measure cell viability in vitro in the presence of 6-OHDA and/or daNGO. The intracellular ROS level was quantified using 2',7'-dichlorofluorescein diacetate. daNGO showed neuroprotective effects against 6-OHDA-induced toxicity and also displayed ROS scavenging properties. We then tested the protective effects of daNGO against 6-OHDA induced toxicity in a rat model. Stepping tests showed that the akinesia symptoms were improved in the daNGO group compared to the control group. Moreover, in an apomorphine-induced rotation test, the number of net contralateral rotations was decreased in the daNGO group compared to the control group. By immunofluorescent staining, the animals in the daNGO group had more tyrosine hydroxylase-positive cells than the controls. By anti-Iba1 staining, 6-OHDA induced microglial activation showed a significantly decrease in the daNGO group, indicating that the neuroprotective effects of graphene resulted from anti-inflammation. In conclusion, nano-graphene oxide has neuroprotective effects against the neurotoxin induced by 6-OHDA on dopaminergic neurons.

Increased Slc6a4 Expression Associated with Decreased Dopaminergic Neurons in an MPTP Induced Parkinsonism Mouse Model (파킨슨병 동물 모델에서 도파민세포의 감소와 관련된 Slc6a4 발현의 증가)

  • Yeo, Sujung
    • Korean Journal of Acupuncture
    • /
    • v.38 no.3
    • /
    • pp.133-139
    • /
    • 2021
  • Objectives : Parkinson's disease is a neurodegenerative disease caused by a decrease in the dopaminergic neurons in the substantia nigra. The abnormal expression of solute carrier family 6 member 4 (Slc6a4) has been reported in patients with Parkinson's disease. Methods : In this study, we used MPTP to examine the changes in the expression of Slc6a4 in the brain of mice with Parkinson's disease and investigate its effect on dopaminergic neuronal cell death. Results : In the examination of the Slc6a4 expression in the substantia nigra of MPTP-treated mice for 4 weeks. The gene expression was increased compared to the normal group. To investigate the relationship between Slc6a4 and dopaminergic neurons, we performed a study using siRNA of Slc6a4 in the dopaminergic neuronal cell line SH-SY5Y. Using the siRNA of Slc6a4 to evaluate gene expression, it revealed that the tyrosine hydroxylase (TH) expression increases when Slc6a4 decreases. Moreover, this confirms its effects on the dopaminergic neurons. Additionally, through the evaluation of factors related to apoptosis, in particular, it was established that the value of bax/bcl2 decreased and was affected. These results suggest that a decreased Slc6a4 expression induces an increase in TH expression, providing a mechanism of action for dopaminergic neurons regulated by Slc6a4 expression. Conclusions : Slc6a4 is deemed to be involved in the regulation of dopaminergic neurons, suggesting that an increased Slc6a4 expression induced by MPTP may influence a reduction of dopaminergic neurons.