• Title/Summary/Keyword: SH-SY5Y cell line

Search Result 44, Processing Time 0.021 seconds

Identification of Three Competitive Inhibitors for Membrane­Associated, $Mg^{2+}-Dependent$ and Neutral 60 kDa Sphingomyelinase Activity

  • Kim Seok Kyun;Jung Sang Mi;Ahn Kyong Hoon;Jeon Hyung Jun;Lee Dong Hun;Jung Kwang Mook;Jung Sung Yun;Kim Dae Kyong
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.923-929
    • /
    • 2005
  • Methanol extracts of domestic plants of Korea were evaluated as a potential inhibitor of neutral pH optimum and membrane-associated 60 kDa sphingomyelinase (N-SMase) activity. In this study, we partially purified N-SMase from bovine brain membranes using ammonium sulfate. It was purified approximately 163-fold by the sequential use of DE52, Butyl-Toyopearl, DEAE-Cellulose, and Phenyl-5PW column chromatographies. The purified N-SMase activity was assayed in the presence of the plant extracts of three hundreds species. Based on the in vitro assay, three plant extracts significantly inhibited the N-SMase activity in a time- and concentration-dependent manner. To further examine the inhibitory pattern, a Dixon plot was constructed for each of the plant extracts. The extracts of Abies nephrolepis, Acer tegmentosum, and Ginkgo biloba revealed a competitive inhibition with the inhibition constant (Ki) of $11.9 {\mu}g/mL,\;9.4{\mu}g/mL,\;and\;12.9{\mu}g/mL$, respectively. These extracts also inhibited in a dose-dependent manner the production of ceramide induced by serum deprivation in human neuroblastoma cell line SH-SY5Y.

Anti-oxidative and Neuroprotective Activities of Pig Skin Gelatin Hydrolysates (돈피젤라틴 효소분해물의 항산화 활성 및 신경세포보호효과)

  • Kim, Dong Wook;Park, Kimoon;Ha, Goeun;Jung, Ju Ri;Chang, Ounki;Ham, Jun-Sang;Jeong, Seok-Geun;Park, Beom-Young;Song, Jin;Jang, Aera
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.258-267
    • /
    • 2013
  • This study was conducted to determine the antioxidative and neuroprotective effect of pig skin extracts (PS) and pig skin gelatin hydrolysates (LPS) using a human neuroblastoma cell line (SH-SY5Y). The extraction yield of PS was 3 fold higher than that of LPS. The protein content of PS was about 10 fold higher than that of LPS (p<0.05). Also LPS increased antioxidative activity dose dependently, and the activity was significantly higher than PS at all concentration (p<0.05). DPPH radical scavenging activity of LPS at 50 mg/mL was 92.97%, which was similar to $1{\mu}M$ vitamin C as a positive control. ABTS radical scavenging activity of LPS (20 mg/mL) was 89.83% and oxygen radical absorbance capacity of LPS at 1 mg/mL was $141.39{\mu}M$ Trolox Equvalent/g. No significant change of human neuroblastoma cells was determined by MTT test. Cell death by oxidative stress induced by $H_2O_2$ and amyloid beta 1-42 ($A{\beta}_{1-42}$) was protected by LPS rather than PS. Acetylcholine esterase was significantly inhibited, by up to 33.62% by LPS at 10 mg/mL. Therefore, these results suggest that pig skin gelatin hydrolysates below 3 kDa have potential to be used as anti-oxidative and neuroprotective functional additives in the food industry, while further animal test should be determined in the future.

Inhibition of ${\beta}-amyloid_{1-40}$ Peptide Aggregation and Neurotoxicity by Citrate

  • Park, Yong-Hoon;Kim, Young-Jin;Son, Il-Hong;Yang, Hyun-Duk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.273-279
    • /
    • 2009
  • The accumulation of ${\beta}$-amyloid (A${\beta}$) aggregates is a characteristic of Alzheimer's disease (AD). Furthermore, these aggregates have neurotoxic effects on cells, and thus, molecules that inhibit A${\beta}$ aggregate formation could be valuable therapeutics for AD. It is well known that aggregation of A${\beta}$ depends on its hydrophobicity, and thus, in order to increase the hydrophilicity of A${\beta}$, we considered using citrate, an anionic surfactant with three carboxylic acid groups. We hypothesized that citrate could reduce hydrophobicity and increase hydrophilicity of A${\beta}_{1-40}$ molecules via hydrophilic/electrostatic interactions. We found that citrate significantly inhibited A${\beta}_{1-40}$ aggregation and significantly protected SH-SY5Y cell line against A${\beta}_{1-40}$ aggregates-induced neurotoxicity. In details, we examined the effects of citrate on A${\beta}_{1-40}$ aggregation and on A${\beta}_{1-40}$ aggregates-induced cytotoxicity, cell viability, and apoptosis. Th-T assays showed that citrate significantly inhibited A${\beta}_{1-40}$ aggregation in a concentration-dependent manner (Th-T intensity: from 91.3% in 0.01 mM citrate to 82.1% in 1.0 mM citrate vs. 100.0% in A${\beta}_{1-40}$ alone). In cytotoxicity and viability assays, citrate reduced the toxicity of A${\beta}_{1-40}$ in a concentration-dependent manner, in which the cytotoxicity decreased from 107.5 to 102.3% as compared with A${\beta}_{1-40}$ aggregates alone treated cells (127.3%) and the cell viability increased from 84.6 to 93.8% as compared with the A${\beta}_{1-40}$ aggregates alone treated cells (65.3%). Furthermore, Hoechst 33342 staining showed that citrate (1.0 mM) suppressed A${\beta}_{1-40}$ aggregates-induced apoptosis in the cells. This study suggests that citrate can inhibit A${\beta}_{1-40}$ aggregation and protect neurons from the apoptotic effects of A${\beta}_{1-40}$ aggregates. Accordingly, our findings suggest that citrate administration should be viewed as a novel neuroprotective strategy for AD.

Cognitive-enhancing Effects of a Fermented Milk Product, LHFM on Scopolamine-induced Amnesia (발효유 산물인 LHFM의 인지기능 개선 효과)

  • Jeon, Yong-Jin;Kim, Jun-Hyeong;Lee, Myong-Jae;Jeon, Woo-Jin;Lee, Seung-Hun;Yeon, Seung-Woo;Kang, Jae-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.428-433
    • /
    • 2012
  • Probiotics and their products, such as yogurt and cheese have been widely consumed in many countries with proven health benefits including anti-microbial activity and anti-diarrheal activity. LHFM (Lactobacillus helveticus - fermented milk) is a processed skim milk powder, fermented by a probiotics, L. helveticus IDCC3801. In the present study, we aimed to investigate the neuroprotective effects and the cognitive improvements of LHFM. LHFM itself did not show any cytotoxicity to the human neuroblastoma cell line, SH-SY5Y; however, it dose-dependently protected against glutamate-induced neuronal cell death. LHFM also attenuated scopolamine-induced memory deficit in Y-maze and Morris-water maze. In the analysis of hippocampus after a behavior test, LHFM significantly increased the acetylcholine level and also inhibited acetylcholine esterase activity. Therefore, the raised acetylcholine release partially contributes to the improvement of learning and memory by a treatment with LHFM. These results suggest that LHFM is an effective material for prevention or improvement of cognitive impairments caused by neuronal cell damage and central cholinergic dysfunction.