• Title/Summary/Keyword: SKD11

Search Result 85, Processing Time 0.033 seconds

Effect of Copper Addition on Mechanical and Thermal Properties of SKD11 Stainless Steel (Cu 첨가에 따른 SKD11의 기계적, 열적 특성 변화)

  • Choi, Gwang Mook;Chae, Hong-Jun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.6
    • /
    • pp.103-109
    • /
    • 2019
  • Cu-added SKD11 was manufactured through the casting process and the effects of Cu addition with different contents (0, 1, 2 and 3 wt%) and aging treatment on microstructure, mechanical characteristics such as tensile strength and hardness, and thermal conductivity were investigated. The microstructure was analyzed by FE-SEM and XRD, the mechanical characteristics by Rockwell hardness tester and Tensile tester, and the thermal conductivity by Laser flash. As a result, SKD11 containing Cu had higher hardness than as-received SKD11. The hardness of as-cast SKD11 containing 1 wt% Cu was 42.4 HRC, whereas the hardness of asreceived SKD11 cast alloy was 19.5 HRC, indicating that the hardness was greatly improved when Cu was added. In the case of tensile strength, Cu-added SKD11 cast alloy had lower tensile strength than as-received SKD11, and the tensile strength tended to increase as Cu content increased. After heat treatment, however, tensile strength of as-received SKD11 was significantly increased, whereas in the case of Cu-added SKD11, as the Cu contents increased, the tensile strength increased less and even reduced at 3 wt% Cu. The thermal conductivity of Cu-added SKD11 cast alloy was about 13 W m-1 K-1, which was lower than that of the asreceived SKD11 cast alloy (28 W m-1 K-1). After the heat treatment, however, the thermal conductivity of as-received SKD11 was reduced, while the thermal conductivity of the SKD11 added with Cu was increased. Thermal conductivity was generally larger with less Cu content, and this tendency became more pronounced after heat treatment.

Microstructure and Wear Characteristics of TiC-SKD11 Composite Fabricated by Liquid Pressing Infiltration Process (용융가압함침 공정으로 제조한 TiC-SKD11 복합재료의 미세조직 및 내마모 특성)

  • Cho, Seungchan;Jo, Ilguk;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.209-214
    • /
    • 2017
  • Titanium carbide (TiC) reinforced SKD11 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructure, mechanical properties, and wear characteristics of the fabricated 60 vol% TiC-SKD11 composite are analyzed. The composite exhibits superior mechanical properties, such as hardness and compressive strength with 24% lower density as compared with SKD11. Improved wear resistance of the TiC-SKD11 composite originates from uniformly reinforced TiC having strong interfacial bonding strength between TiC/SKD11 interface.

Study on Rotor and Bushing Material of Gyro-pump (자이로 펌프의 로타 및 붓싱 재료에 관한 연구)

  • 김기선;김정훈;김선화
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.2
    • /
    • pp.115-119
    • /
    • 2002
  • This study was performed to improve mechanical properties of rotor and bushing materials. SACD and SKD11 steels as rotor and bushing materials were investigated. Gas nitriding and TiN coating were carried out on SACM and SKD11 steels. TiN coating was deposited on SKD11 steel by reactive sputtering process. This coated layer was picked off during the operation because of insufficient adhesion. Gas nitriding was carried out on SACM and SKD11 steels in an ammonia atmosphere at 51$0^{\circ}C$ for 72 hrs. These gas nitrided parts showed good mechanical properties. SKD11 steels were heat-treated to obtain optimum carbide size and distribution. As a results, the hardness increased.

  • PDF

Powder Sintering Characteristics of Carbon Nanotubes Reinforced SKD11 Tool Steel Sintered by Spark Plasma Sintering (방전플라즈마 소결법으로 제조된 탄소나노튜브 강화 SKD11 금형강의 분말소결 특성)

  • Moon, Je-Se;Jung, Sung-Sil;Lee, Dae-Yeol;Jeong, Young-Keun;Kang, Myung Chang;Park, Chun-Dal;Youn, Kook-Tae
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.157-162
    • /
    • 2015
  • SKD11(ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. Adding of CNTs increased the performance of mechanical properties more. 1, 3 vol.% CNTs was dispersed in SKD11 matrix by mechanical alloying. SKD11 carbon nanocomposite powder was sintered by spark plasma sintering process. FE-SEM, HR-TEM and Raman analysis were carried out SKD11 carbon nanocomposites.

Fabrication and Characteristic Evaluation of Hybrid Carbon Nanotubes Reinforced SKD11 Cold Work Tool Steel (탄소나노튜브 강화 SKD11 냉간금형용 하이브리드 탄소나노소결체 제조 및 특성 평가)

  • Jung, Sung-Sil;Moon, Je-Se;Lee, Dae-Yeol;Youn, Kuk-Tae;Park, Chun-Dal;Song, Jae-Sun
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.291-296
    • /
    • 2013
  • SKD11 (ASTM D2) tool steel is a versatile high-carbon, high-chromium, air-hardening tool steel that is characterized by a relatively high attainable hardness and numerous, large, chromium rich alloy carbide in the microstructure. SKD11 tool steel provides an effective combination of wear resistance and toughness, tool performance, price, and a wide variety of product forms. The CNTs was good additives to improve the mechanical properties of metal. In this study, 1, 3 vol% CNTs was dispersed in SKD11 matrix by mechanical alloying. The SKD11+ CNT hybrid nanocomposites were investigated by FE-SEM, particle size distribution, hardness and wear resistance. The CNT was well dispersed in the SKD11 matrix and the mechanical properties of the composite were improved by CNTs addition. It shows good feasibility as cold work die tool.

Effect of ion implantation on the tribological properties of TiN-coated SKD 11 and SKD 61 (TiN 코팅된 SKD11과 SKD61의 내마모 성질레 미치는 이온주입 효과)

  • 장태석;이수완;문대원;방건웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.6
    • /
    • pp.391-399
    • /
    • 1997
  • To figure out wheher the tribological properties of a hras-coating layer can be imporved by ion implantatio, TiN-coated SKD 11 61 were implanted with nitrogen ion and their wear peoperties were examined systematically. The amount of nitrgen ione implanted on the coating layer was $2 \times 10^{15},\;10^{16},\;10^{17},\;and\;10^{18}\;ions/\textrm{cm}^2$, respectively. X-ray diffraction revealed theintensity of the peaks belong TiN tended to increase as the ion dose increased, which implied that the implantation promoted the formation of TiN in the coated later. Howeverthe hardensity of the specimens increased then decreased again as the ion dose increased, resulting in a obvious drop of the hardness for the ion does of $2 \times 10^{18}\;ions/\textrm{cm}^2$<\TEX>. While the adhesion of the coated layer of SKD 61 was excllent regrdless of the implatation, the adhesion of the later of SKD 11 was apparently improved by the implantation. The overall wear properties of SKD 11 was better than that of SKD 61, and the best result was yielded at the ion dose of $2 \times 10^{15}\;ions/\textrm{cm}^2$<\TEX>.

  • PDF

The Analysis of Machining Characteristics of SKD11 by Orthogonal Cutting Experiments (SKD11의 2차원 절삭실험을 통한 절삭 특성 해석)

  • 김남규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.365-370
    • /
    • 1999
  • SKD11 is one of the most difficult workpiece for machining, so it is necessary to evaluate the machining characteristics of SKD11. The workpiece was made to be the pipe form and heat-treated to HRC45. In this paper, the orthogonal cutting experiment of this material was carried out with TiAlN coated WC cutting tool of 4 kinds of rake angle. After cutting experiment, cutting characteristics of SKD11 were investigated according to variation of cutting speed, feedrate and rake angle.

  • PDF

The effect of subzero treatment and gas nitration on SKD11 (SKD11합금의 심냉처리와 질화처리에 대한 영향)

  • 김정훈;김기선;김선화
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.83-86
    • /
    • 2003
  • SKD11은 자이로 펌프의 로타와 붓싱 재질로 사용되는데, 자이로펌프는 임펠러의 회전이 없고 원판의 기울기 운동으로 흡입과 토출을 반복하는 고압용적식 펌프이다. 이 펌프의 내구성을 향상시키기 위하여 우수한 내압성과 내마모성을 갖는 재질선정이 요구한다. 따라서 현재 가장 널리 사용되고있는 SKD11에 심냉처리를 통하여 미세조직의 개선을 수행하였고, 가스질화처리에 의한 표면경화로 내압성과 내마모성을 증가시키고자 하였다. SKD11의 미세조직 변화를 조사하기 위하여 광학현미경과 X-선 회절기를 사용하여 미세조직 관찰과 상변화를 조사하였으며, Rockwell 경도기틀 사용하여 각 변수에 따른 경도변화를 조사하였다. 연구 결과 기지조직은 모두 마르텐사이트로 나타났으며, 이 이외에 각각의 조건에 따라 크롬탄화물, PFZ, 잔류오스테나이트가 확인되었다. SKD11을 액화질소로 냉각한 후 500℃에서의 템퍼링으로 가장 큰 경도값을 얻을 수 있었다. 또한 가스질화처리에 의하여 표면경도를 크게 증가시킬 수 있었다.

  • PDF

A Study on the Deep Hole Drilling for Refractory Metals - STS type BTA drilling for SKD11 high alloy tool steel (난삭재의 심공가공에 관한 연구 (SKD11고합금공구강에 대한 STS타입 BTA드릴 가공))

  • Sim, Sung-Bo;Kim, Chi-Ok;Kim, Cheol-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.70-78
    • /
    • 1999
  • 오늘날 기계공업 현장에서 심공드릴가공은 광범위한 응용과 양호한 생산성으로 인하여 그 요구가 증가 되고 있다. 그러므로, 본 연구는 난삭재인 SKD11고합금공구강을 여러가지 절삭조건하에서 BTA드릴가공하여 얻은 실험결과(표면조도, 진직도, 진원도, 원통도, 구멍확대량, 등)를 다루었으며 이들의 이론적 배경과 실험을 비교 분석하였다. 프레스금형 부품과 기계부품으로 사용되고 있는 SKD11고합금공구강은 기계가공이 힘든 난삭재료로서 그 어려움이 크므로 본 연구는 생산현장에 보다 나은 심공드릴가공결과와 관련 지식을 제공 할수 있다고 사료된다.

  • PDF

Formation of Coatings on SKD11 Core Mold Steel by Plasma Electrolytic Oxidation (코어금형용강 SKD11의 플라즈마 전해산화에 의한 피막 형성)

  • Kim, S.M.;Lee, T.H.;Kang, S.J.;Cho, Y.H.;Koo, J.M.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.209-216
    • /
    • 2011
  • Surface coatings were prepared on SKD11 core mold steel by plasma electrolytic oxidation (PEO). The coatings were investigated about the formation condition of core mold steel. SKD11 were coated by PEO in a mix solution of Sodium Aluminate $NaAlO_2$ (10 g/l), Sodium Silicate powder $Na_2SiO_3$ (0.5 g/l), Sodium tungstate dihydrate $Na_2WO_42H_2O$ (0.5 g/l) at less than $30^{\circ}C$. The electrical condition were voltage : 500~600 V; Pulse : 600~1800 Hz; current density 15~20 $A/dm^2$ various time : 3 min~40 min. The coatings surface morphology, cross-section, friction coefficient, hardness were investigated. The PEO coatings on SKD11 core mold steel showed the extended service life.