• Title/Summary/Keyword: SMMIAR process

Search Result 2, Processing Time 0.014 seconds

The Operating Characteristics of SMMIAR process for Biological Nitrogen.phosphorus Removal (생물학적 질소.인 제거를 위한 SMMIAR(Submerged Moving Media Intermittent Aeration Reactor) 공정의 운전 특성)

  • 김홍태;김학석;김규창
    • Journal of Environmental Science International
    • /
    • v.12 no.1
    • /
    • pp.55-61
    • /
    • 2003
  • This study was carried out to obtain the operating characteristics of SMMIAR process for biological nitrogenㆍphosphorus removal. SMMIAR was operated at HLR(Hydraulic loading rate) of 39.6, 52.8, 63.4 and 79.2 $\ell$/$m^2$/d respectively and the operating parameters such as intermittent aeration time ratio of aerobic/anoxic, DO and microorganism concentration were changed to confirm the optimum operating condition. The concentrations of the wastewater BOD, TN(Total nitrogen) and TP(Total phosphorus) were 150, 30 and 7.5mg/$\ell$ respectively. Achieving better removal efficiencies of BOD, TN and TP up to 90, 85.4 and 95.4% respectively, we must keep in operation condition of SMMIAR by 0.75 of time ratio of aerobic/anoxic and by minimum 45 minutes of oxic period simultaneously.

Diversity of Nitrifying and Denitrifying Bacteria in SMMIAR Process (완전침지형 회전매체공정 내 질산화 및 탈질 관련 미생물의 군집 분포)

  • Quan, Zhe-Xue;Lim, Bong-Su;Kang, Ho;Yoon, Kyung-Yo;Yoon, Yeo-Gyo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1014-1021
    • /
    • 2006
  • SMMIAR (Submerged Moving Media Intermittent Aeration Reactor) Process is a very efficient system which remove ammonia to nitrogen gas in one reactor. In this study, we determined the diversity of ammonia oxidizing bacteria and denitrifying bacteria using specific PCR amplification and the clone library construction. An ammonia monooxygenase gene(amoA) was analyzed to investigate the diversity of nitrifiers. Most of amoA gene fragments (27/29, 93%) were same types and they are very similar (>99%) to the sequences of Nitrosomonas europaea and other clones isolated from anoxic ammonia oxidizing reactors. ANAMMOX related bacteria have not determined by specific PCR amplification. A nitrite reductase gene(nirK) was analyzed to investigate the diversity of denitrifying bacteria. About half (9/20, 45%) of denitrifiers were clustered with Rhodobacter and most of others were clustered with Mesorhizobium (6/20, 30%) and Rhizobium (3/20, 15%). All of these nirK gene clones were clustered in alpha-Proteobacteria and this result is coincide with other system which also operate nitrification and denitrification in one reactor. The molecular monitoring of the population of nitrifiers and denitrifiers would be helpful for the system stabilization and scale-up.