• Title/Summary/Keyword: SOIL pH

Search Result 4,042, Processing Time 0.027 seconds

Effect of Different Soil pH on the Root Growth of Temperate Grass Species (토양산도의 차이가 주요화본과목초의 뿌리생육에 미치는 영향)

  • 이혁호;박근제;이종열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 1987
  • A pot experiment conducted to investigate the root elongation and weight of grasses, i.e. Orchardgrass, tall fescue and perennial ryegrass under the conditions adjusted pH of half vertical part of pot soil to seven levels from 2 to 8. 1. Root growth was drastically decreased as soil pH was lowed. 2. Higer the soil pH, longer the root length. Increase of soil pH to 6 increased the root length of orchardgrass, perennial ryegrass and tall fescue. 3. Regardless of grass species, most of roots distributed to the soil which adjusted pH from 6 to 7. 4. Dry weight of root was increased to pH 7 of soil in orchardgrass and perennial ryegrass and was 55 to 78% of production of pH 6 compared with soil pH 7. In case of tall fescue, dry root weight in the soil pH 7 was 69.8% of root weight growed in soil pH 6.

  • PDF

Effects of Simulated Acid Rain on Mineral Nutrient Movement in Soil (인공산성비 처리가 토양의 무기양분 이동에 미치는 영향)

  • Ryu, Kwan-Shig
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.362-367
    • /
    • 1998
  • To investigate the effects of simulated acid rain(SAR) on the downward movement of mineral nutrients, SARs of different pH were applied to the soil. SAR of pH 2.0 decreased the soil pH greatly, while SAR of pH 4.0 and 6.0 did not change the soil pH to compare to that of SAR of pH 2.0. Decrease in soil pH was in the order of sandy loam > loam > clay loam. The amoumt of leached exchangeable and soluble bases from the soil due to the penetration of SAR was in the order of Ca >Mg > K. After application of 1200mm SAR of pH 2.0 in to the soil downward mean movements of the exchangeable and soluble bases was in the order of Mg > Ca > K in sandy loam and loam soil and Ca > Mg > K in clay loam soil. Downward movements of the those bases under pH 4.0 into the soil was in the order of Mg > K > Ca in sandy loam and clay loam, and K > Mg > Ca in loam soil. Available phosphorus moved slightly downward with increasing acidity of the SAR.

  • PDF

Characteristics of Adsorption and Desorption of Metalaxyl in the Green Soil of Golf Course (골프장 그린 토양에서 Metalaxyl의 흡ㆍ탈착 특성)

  • 유병로;정경희
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.227-234
    • /
    • 2002
  • Laboratory experiments were conducted to examine the behavior of metalaxyl in environment which was used as pesticide in green soil of golf course and as functions of the characteristics of adsorption, desorption and degradation in soil texture and organic matter contents. Acid water containing metalaxyl was conducted to evaluate the effects on adsorption, desorption and degradation. The adsorption of metalaxyl played more significant role in organic contents than clay contents, and pH Increases more pH 2.5 than pH 5.6. The desorption of metalaxyl from contaminants soil decreased higher organic contents LS-soil than S-soil, but the desorption amount of metalaxyl increased more pH 5.6 than pH 2.5. The rate of degradation of metalaxyl in green soil environmental increased higher organic contents LS-soil than S-soil and decreased more pH 2.5 than pH 5.6. These results indicated that the behavior of metalaxyl of the green soil was affected the soil texture of the golf course. Increasing of organic contents, the adsorption amount of metalaxyl on soil increased. Moreover the decrease of the pH of solution increased adsorption amounts and decreased desorption amounts. As the results, the transportation of metalaxyl in soil decreased the acidic rates. The acidification of soil by the acid rain increased the adsorption amount of metalaxyl, but the degradation of metalaxyl decreased. Therefore, it is possible to sustain contamination in run-off the stream and ground water by residuals in soil.

The Characteristics of Strength and Consolidation of Clayey Soil Dependent on pH of Soil Pore Water (간극수의 pH가 점성토의 강도와 압밀특성에 미치는 영향)

  • Lee, Ho-Jin;Kim, Byung-Il;Park, Sang-Kyu;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1047-1054
    • /
    • 2005
  • The purpose of this study is the understanding to changes in the characteristic of soil structure and classification, atterberg limits, undrained shear strength and consolidation of clayey soil dependent on pH of soil pore water. A series of tests including consistency tests, uniaxial compressive tests, vane tests and oedometer tests are performed on. The test results indicated that pH changes in the soil pH resulted in changes in the soil structure and classification, stress-strain behavior. Specially, when pH is conditioned to 7, liquid limit, undrained shear strength and preconsolidation pressure are the largest.

  • PDF

Studies on the Relation between Acid Deposition and Soil Chemical Properties in Forest Areas - Especially in Gyeongsangnam-Do Province - (산성강하물과 산림토양 화학성의 관련성에 관한 연구 - 경상남도 지역을 중심으로 -)

  • Lee, Chong-Kyu
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.260-267
    • /
    • 2008
  • This study was carried out to investigated the relation between air depositions and soil properties in Gyeongsanman province. Soil pH was average 4.40 in regions, and was the highest soil pH value in Miryang-sanne(pH 5.02), the lowest pH value in Namhae-seomyeon(pH4.08). Soil pH, soil organic matter content, avail phosphorus, K, Ca and cation exchange capacity(CEC) were significantly different among regions(p<0.05). Pb in Heavy metal content was 3.86mg/kg average value, and was the highest in Keo-je region(9.87mg/kg), the lowest in Mryang-sanne (0.86mg/kg). Zn, Cd, Cr and Ni were significantly different among regions(p<0.05). Correlation between rainfall pH and soil properties were positive in soil $pH(r=0.7826^{**})$, Ca$(r=0.6278^*)$, Mg$(r=0.5841^*)$, CEC$(r=0.6341^{**})$ and Cd$(r=0.5995^*)$, and were negative in Pb$(r=-0.5283^*)$. Correlation between $SO_2$ concentration and soil properties was negative in soil pH$(r=-0.6796^{**})$, Ca$(r=-0.5810^*)$, Mg$(r=-0.5522^*)$) and CEC$(r=-0.5905^*)$. Correlation between $NO_2$ concentration and soil properties were positive in organic matter $(r=0.6208^*)$, K$(r=0.5380^*)$. It was predicted that rainfall and $SO_2$ concentration would affect soil acidification, and soil heavy metal content related Cd and Pb. Others soil heavy metal were not related.

Effect of Lime Amount and Application Time on Soil pH Change, Yield, and Quality of Leaf Tobacco (석회시용량과 시용시기가 경작지 토양산도 변화와 잎담배 수량 및 품질에 미치는 영향)

  • 정훈채;김용연;황건중
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.61-70
    • /
    • 2000
  • This study was carried out to improve the tobacco field condition and to determine the effect of lime amount and application time on soil pH, yield, and quality of leaf tobacco. Lime was applied to the tobacco field by determined amounts according to different pH level. The changes of soil pH, growth of tobacco, yield, and quality of KF109 and Br21 tobacco were surveyed by time lapse. The target pH value in tobacco field soil can be reached at 6 weeks after lime application, and then the soil pH was lowered slightly after that time. The lime amount needed to reach target pH was decreased 40 % in the same tobacco field after 1 year. Though the initial growth rate of flue-cured tobacco in the field of pH 7.0 was lower than that of conventional tobacco field, the field of pH 7.0 showed the highest yield after the maximum growth stage. The quality of cured leaf tobacco in the field of pH 7.0 applied lime at spring season was slightly lowered compared with that in conventional. This results indicated that the best pH condition in tobacco field for the best tobacco growth was 6.5 and the proper time of lime application was fall season of previous year by application of the whole quantity.

  • PDF

pH Buffer Capacity and Lime Requirement of Korean Acid Soils (한국산성토양의 pH 완충력과 석회소요량 특성)

  • Kim, Yoo-Hak;Yoon, Jung-Hui;Jung, Beung-Gan;Zhang, Yong-Sun;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.378-382
    • /
    • 2004
  • Soil pH is an important indicator for soil reactions and crop growth. pH buffer capacity and lime requirements are necessary to comprehend and manage soils well. The characteristics related with soil pH were analyzed and 5 field trials were conducted to elucidate pH buffer capacity of soil and lime requirements and liming factor for Korean acid soils. Soil minerals were analyzed for the soil of 2 years after treating $CaCO_3$ using X-ray diffraction. The amount of neutralized $H^+$ was regarded as the exchangeable aluminium overcoming ${\Delta}pH$, because pH buffer capacity of soil depended on exchangeable aluminium. Lime requirement was somewhat similar to the KCl exchangeable aluminium and it was also affected by the exchangeable cation by added lime. X-ray diffraction analyses revealed that an aluminium dissociation from Korean acid soils was equilibrated with kaolin minerals and changed into anorthite ($CaAl_2Si_2O_8$) by neutralizing with $CaCO_3$. Neutralizing process was composed of changing process of $Al^{3+}$ into $H^+$ and $Al(OH)_4{^-}$ ionic species and of neutralizing $H^+$ by, the amount of which was lime requirement. The fact that anorthite dissociates an aluminium ion higher than kaolinite does enabled to consider a liming factor (LF) the content of exchangeable cation and ${\Delta}pH$, $LF=1.5+0.2{\times}{\sum} Cations{\times}{\Delta}pH$.

A Study on the Acidification of Soils (토양의 산성화에 관한 연구)

  • Park,Byeong-Yun;Eo,Yun-U;Yang,So-Yeong;Jang,Sang-Mun;Kim,Jeong-Ho;Lee,Dong-Hun
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.305-310
    • /
    • 2001
  • pH($H_2O$), pH(KCI), CEC(cation exchange capacity), O.M.(organic matter) and exchangeable cations(K, Na, Ca, Mg) of paddy soil, upland soil and forest soil in Kumi city were investigated for the purpose of knowing soil acidification and the correlation between soil acidification and leaching of inorganic salts. The mean pH($H_2O$) values of paddy soil were 5.23(surface soil) and 5.69(subsoil) and 4.74(subsoil). The were 6.37(surface soil) and 6.11(subsoil), and those of forest soil were 4.67(surface soil) and 4.74(subsoil). The mean pH(KCl) values of paddy soil were 4.59(surface soil) and 4.98(subsoil) were 5.48(surface soil) and 5.04(subsoil), and those of forest soil were 3.82(surface soil) and 3.89(subsoil). The acidification of forest soil was more rapid than that of paddy soil and upland soil/ The total mean amounts of exchangeable cations(K, Na, Ca, Mg) in paddy soils were 6.14me/100g(surface soil) and 5.64me/100g(subsoil), and those in upland soils were 6.86me/100g(surface soil) and 6.65me/100g(subsoil), and those in forest soils were 4.06me/100g(surface soil) and 3.34me/100g(subsoil). The contents of inorganic salts in forest soil were much less than those of paddy soil and upland soil. The correlation coefficients(r) between pH($H_2O$) values and the total amounts of exchangeable cations in soils were $0.6635^{**}$(surface soil) and $0.6946^{**}$(subsoil), and those between pH(KCl) values and exchangeable cations in soils were 0.6629(surface soil) and $0.5675^{**}$(subsoil). The correlation between soil acidification and leaching of inorganic salts in soil was positively significant at 1% level.

  • PDF

pH Dependence on EC in Soils Amended with Fertilizer and Organic Materials and in Soil of Plastic Film House (비료와 퇴구비를 처리한 토양과 시설재배지 토양에서 토양의 EC에 따른 pH변화)

  • Kim, Yoo-Hak;Kim, Myeong-Sook;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.5
    • /
    • pp.247-252
    • /
    • 2005
  • Soil pH is an intensity factor of releasing hydrogen ion which is buffered by aluminum. It depends on pH buffer capacity of Al whether soil pH is governed directly by cations or not. A study was conducted to elucidate the pattern of pH changes by soil EC. Fertilizer and three kinds of organic manures composed of cow and pig and fowl dropping and one kind of rice straw compost were added independently into upland sandy loam soil. This treated soils and four upland soils under plastic film house having different levels in electrical conductivity (EC) were incubated with field capacity at $30^{\circ}C$ for 5, 10, 20 and 40 days. Soil pH varied directly as the cations contained in organic materials according to degree of saturating pH buffer capacity (pBC) of sandy loam soil. pH of the soils under plastic film house was lowered by soil EC due to governing by overplus of cation beyond pBC.

Growth Inhibition of Cucumber by Absorbing Excess Al at Low Soil pH (강한 산성토양에서 Al의 과잉 흡수에 의한 오이 생육장해 양상)

  • Kim, Yoo-Hak;Kim, Myung Sook;Kang, Seong Soo;Lee, Hyeong Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.925-927
    • /
    • 2012
  • On-site diagnosis applied to soil having a symptom of yellowing and whitening in cucumber leaf and stem. Soil pH determined 4.2 by methods of on-site analysis and 4.5 by soil test analysis. High aluminum in soil solution extracted with water saturation was detected. Leaf and stem tissue were abundant in Al content but not in Ca. Also, N content of leaf and stem was low compared to normal N ranges. This symptom of cucumber assumed to be from the Al and nitrous acid gas toxicity by low soil pH and Eh. Conclusionally, symptom in leaf and stem of cucumber was alleviated and cucumber normally recovered during cultivation period by applying calcium hydroxide solution to correct soil pH up to 6.5. These results showed that low soil pH resulted in aluminum toxicity and N deficiency to plant growth in on-site farming.