• Title/Summary/Keyword: SOx Scrubber

Search Result 25, Processing Time 0.031 seconds

Automated Determination of SOx in Air by Diffusion Scrubber-lon Chromatography (확산포집-이온크로마토그래프법을 이용한 대기중 SOx의 자동정량)

  • 이용근;이동수;백선영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.307-313
    • /
    • 1995
  • An automatic method is developed for the determination of SOx in atmosphere. The method involves SOx sampling in diffusion scrubber followed by ion chromatographic analysis. Filtered air is withdrawn at 1.8.ell./min through a diffusion scrubber of which inner tube is made of PTFE(Gore-tex) membrane tubing. 1mM $H_{2}$ $O_{2}$ is used as absorbing solution so that SOx is oxidized to S $O_{4}$$^{2-}$. The scrubbered solution is automatically injected into ion chromatograhpy eith conductivity detection for sulphate determination. Replacement of commonly used polyproplene membrane with PTFE gives several merits such as easy preparation of diffusion scrubber, better collection efficiency. No measurable memory effect is experienced, and this isin contrast to previous work for ammonia. Detection limit of this method defined by three times standard deviation is 0.56ppbv. The precision is 0.4% RSD at SOx concentration of 7.3ppbv Results for Seoulatmosphere ate presented.

  • PDF

Comparative Economic Analysis on SOx Scrubber Operation for ECA Sailing Vessel

  • Jee, Jae-hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.262-268
    • /
    • 2020
  • The IMO (International Maritime Organization) has mandated the restriction of SOx emissions to 0.5 % for all international sailing vessels since January 2020. And, a number of countries have designated emission control areas for stricter environmental regulations. Three representative methods have been suggested to cope with these regulations; using low-sulphur oil, installing a scrubber, or using LNG (Liquefied Natural Gas) as fuel. In this paper, economic analysis was performed by comparing the method of installing a scrubber with the method of using low-sulphur oil without installing additional equipment. We suggested plausible layouts and compared the pros and cons of dif erent scrubber types for retrofitting. We selected an international sailing ship as the target vessel and estimated payback time and benefits based on navigation route, fuel consumption, and installation and operation costs. Two case of oil prices were analyzed considering the uncertainty of fuel oil price fluctuation. We found that the expected payback time of investment varies from 1 year to 3.5 years depending on the operation ratio of emission control areas and the fuel oil price change.

Development of Marine Emission Control System on NOx and SOx through Seawater Electrolysis

  • Kim Houng-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.81-87
    • /
    • 2006
  • In marine air pollution control, SCR (Selective Catalytic Reduction) is reconized as the most effect method to control NOx, but on the other hand. seawater scrubber applying the basic characteristic that is naturally alkaline (pH typically around 8.1) is viewed as an economical SOx removal system at present. Especially, seawater scrubber would not be necessary to follow any of the various land based flue gas desulfurization methods. i.e. wet, dry or alkali scrubbing. However, these methods are not readily adaptable to marine conditions due to the quantifies of consumables required i.e. lime or limestone, the means of operation and the commercial availability. This research is undertaken to develop a new method as the main target of eliminating all exhaust emissions, particularly vessel, because of easy access to seawater and apt to apply a wet scrubber system. First, using the acidic seawater by seawater electrolysis, nitric monoxide(NO) is adequately oxidized to nitric dioxide $(NO_2)$by ClOx-in the acidic seawater, the electrolyzed alkaline seawater by electrolysis which contains mainly NaOH together with alkali metal ions $(i.e\;Na^{+}\;K^{+},\;Mg_{2}\;^{+},\;Ca_{2}\;^{+})$, is used as the absorption medium of NOx, the SOx are absorbed by relatively high solubility compared to other components of exhaust pollutants. The results found that the NOx and SOx removals could be achieved nearly Perfect.

IMO 규정 대응 선박 배기가스 DePM, DeSOx 순환처리장치 (Recycle system) 개발

  • Ha, Sin-Yeong;Kim, In-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.64-65
    • /
    • 2015
  • 본 연구는 PM과 SOx를 효과적으로 저감 시킬 수 있는 Water- Scrubber와 오염물과 세정수의 분리가 가능한 Purifier를 이용한 새로운 순환식 배기가스 세정시스템의 개발하여 PM, PAH 제거효율을 산정한 결과, PM과 PAH모두 유입 수 대비 99%이상 처리되는 것을 확인하였으며, 수질인자도 재사용이 가능한 유입수의 수준으로 분석되었다.

  • PDF

Study on Coagulant Application for Calcium Ammonium Nitrate Extraction of Denitrification Scrubber Waste Cleaning Solution (탈질 스크러버 폐 세정액에 포함된 질안석회 추출을 위한 응집제 적용 연구)

  • Lee, Hyun Suk;Song, Woon Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.289-295
    • /
    • 2017
  • The International Maritime Organization (IMO) in accordance with the regulations with respect to the combustion gases, such as NOx, SOx generated by the marine engine. The combustion gases must be equipped with a device to reduce emissions from all ships passing through the Baltic SECAs. In Korea, the International Maritime Organization (IMO) and the development of a device for NOx, SOx reduction. Scrubber is used in the ammonia water and the Urea solution in the waste water. The waste water containing ammonium nitrate and ammonium sulfate, react of the NOx and SOx gas. In this study, the recovery of by-product, which contains the waste water was used as an organic solvent extraction method of salting out. Ammonium nitrate and ammonium sulfate, the recovery process. A qualitative analysis of the collected by-product FT-IR analysis. Through the elemental analysis and SEM-EDS, characteristic evaluation was performed with an impurity.

The Effect of Emission Control Using Electrolytic Seawater Scrubber

  • An, Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.373-377
    • /
    • 2009
  • It is well known that SOx and NOx concentration has a considerable influence on the $N_2O$ emission of the greenhouse gas properties. The quantity of SOx generated during combustion, on fuel specific basis, is directly related to the sulfur content of the fuel oil. However, restricting the fuel oil sulfur content is only a partial response to limiting the overall quantity of SOx emissions, as there remains no over control on the fuel oil consumption other than the commercial pressure which have always directed the attention. This study was carried out as a new basic experiment method of emission control, manly targeted to the vessel. In the experiment, where the scrubbing was achieved through spray tower with high alkaline water made from the electrolysis of seawater, the combined action was to neutralize the exhaust gases (SOx, PM, CO etc.), dilute it, and wash it out. The results showed that SOx reduction of around 95 percent or over could be achieved when using in the high alkaline water, and also leaded to a reduction in the stability of the each pollutant components including the PM (Particulate Matter). The results suggest that the seawater electrolysis method has a very effective reduction of emissions without heavy cost, or catalysts particularly on board.

Computational Study on the Application of Porous Media to Fluid Flow in Exhaust Gas Scrubbers (배기가스 세정장치내 유체 유동에 대한 다공성 매질 적용 기반의 전산해석적 연구)

  • Hong, Jin-pyo;Yoon, Sang-hwan;Yoon, Hyeon-kyu;Kim, Lae-sung;An, Jun-tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.1-10
    • /
    • 2022
  • Exhaust gases emitted from internal combustion engines contain nitrogen oxides (NOx) and sulfur oxides (SOx), which are major air pollutants causing acid rain, respiratory diseases, and photochemical smog. As a countermeasure, scrubber systems are being studied extensively. In this study, the pressure drop characteristics were analyzed by changing the exhaust gas inflow velocity using a scrubber for a 700 kW engine as a model. In addition, the fluid flow inside the scrubber and the behavioral characteristics of the droplets were studied using CFD, and the design compatibility of the cleaning device was verified. Flow analysis was performed using inertial and viscous resistances by applying porous media to the complex shape of the scrubber. The speed of the exhaust passing through the outlet nozzle from the inlet was determined through the droplet behavior analysis by spraying, and the flow characteristics for the pressure drop were studied. In addition, it was confirmed through computational analysis whether there was a stagnation section in the exhaust gas flow in the scrubber or the sprayed droplets were in good contact with the exhaust gas.

A Study on the Removal of Air Pollutants Using Oxidants and Microbubbles (산화제와 마이크로버블을 이용한 대기오염물질 제거)

  • Kyung-bo Ku;Hyuk-Ku Kwon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • This study investigated the possibility of treating heavy metal pollutants existing in the air in addition to simultaneously removing NOx and SOx by injecting oxidizing and reducing agents into a scrubber into a microbubble device to create an eco-friendly method that does not generate secondary pollutants. Lead compound (Pb) was selected as the heavy metal substance in the air to be treated with microbubbles, and the removal efficiency was confirmed. By treating microbubbles by connecting them to a scrubber, it was confirmed that not only NOx and SOx but also heavy metal substances in the air were reduced, cost was reduced, and secondary environmental pollutants were not generated. Through this study, it was possible to simultaneously remove NOx, SOx, and heavy metals at low cost by applying an eco-friendly method, rather than the existing high-cost treatment method such as SCR. If oxidizing agent, reducing agent, and microbubbles are used appropriately, economical and efficient air pollution can be achieved. Since material processing was possible, it is expected to be helpful in the technological development of environmental prevention facilities.