• Title/Summary/Keyword: SPFMV

Search Result 10, Processing Time 0.035 seconds

Elimination of SPFMV from Virus-infected Sweet Potato Plants through Apical Meristem Culture

  • Kim, Young-Seon;Jeong, Jae-Hun;Park, Jong-Suk;Eun, Jong-Seon
    • Plant Resources
    • /
    • v.7 no.3
    • /
    • pp.200-205
    • /
    • 2004
  • Sweet potato infected with a viral disease (SPFMV) showed irregular chlorotic patterns, so called feathering associated with faint or distinct ring spots that have purple-pigmented borders. SPFMV was eliminated from sweet potato plants using meristem tip culture. MS medium supplemented with BAP (2mg/L) and NAA (0.05 mg/L) was used for shoot proliferation and 1/2 MS medium for rooting of the plants. Highest percentage of regenerated plants (60%) was obtained from the optimum size (0.3-0.5mm) meristem tips. Of these, 60% plants were found negative for SPFMV by RT-PCR. Virus detection by RT-PCR was found to be a reliable method. Meristem-tip culture to produce SPFMV-free quality sweet potato and virus detection by RT-PCR is an efficient, time saving and reliable method for production of SPFMV-free tissue culture raised plants.

  • PDF

Genetic Diversity of Sweet potato feathery mottle virus from Sweet Potatoes in Korea

  • Kwak, Hae-Ryun;Kim, Mi-Kyeong;Jung, Mi-Nam;Lee, Su-Heon;Park, Jin-Woo;Kim, Kook-Hyung;Ko, Sug-Ju;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2007
  • Sweet potato feathery mottle virus(SPFMV) is one of the most prevalent viruses infecting sweet potatoes and occurs widely in sweet potato cultivating areas in Korea. To assess their genetic variation, a total of 28 samples infected with SPFMV were subjected to restriction fragment length polymorphism(RFLP) analysis using DNAs amplified by RT-PCR with specific primer sets corresponding to the coat protein(CP) region of the virus. The similarity matrix by UPGMA procedure indicated that 28 samples infected with SPFMV were classified into three groups based on the number and size of DNA fragments by digestion of CP-encoding regions with 7 enzymes including SalI, AluI, EcoRI, HindIII, FokI, Sau3AI, and DraI bands. Four primer combinations out of 5 designed sets were able to differentiate SPFMV and sweet potato virus G infection, suggesting that these specific primers could be used to differentiate inter-groups of SPFMV. Sequence analysis of the CP genes of 17 SPFMV samples were 97-99% and 91-93% identical at the intra-group and inter-groups of SPFMV, respectively. The N-terminal region of the CP is highly variable and examination of the multiple alignments of amino acid sequences revealed two residues(residues 31 and 32) that were consistently different between SPFMV-O and SPFMV-RC.

Virus Disease Incidences of Sweet Potatoes in Korea

  • Kwak Hae-Ryun;Kim Mi-Kyeong;Chung Mi-Nam;Lee Su-Heon;Park Jin-Woo;Kim Kook-Hyung;Choi Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.239-247
    • /
    • 2006
  • In 2003, a survey of sweet potato virus disease was carried out in seed boxes as well as in various sweet potato fields. Virus infection rate was $5\sim100%$ and 100% at seed boxes and fields, respectively. No relationship of the disease incidence and severity was observed between sweet potato cultivating areas and cultivars. A total of 179 samples were collected and analyzed based on serological, electron microscopic and molecular properties. Field-grown sweet potatoes were examined to inspect 8 different viruses using NCM-ELISA, resulting that 30% of sweet potato was infected by one virus, whereas 70% was by more than 2 viruses. However, RT-PCR using primers selected for seven viruses, such as Sweet potato feathery mottle virus (SPFMV) revealed that of one-hundred seventy-nine tested; 71 of SPFMV, 29 of SPGV, 19 of SPFMV+SPGV, 1 of SPFMV+SwPLV, 1 of SPFMV+SPLCV, 2 of SPFMV+SPGV+SwPLV, 6 of SPFMV+SPGV+SPLCV, 2 of SPFMV+SPGV+SwPLV+SPLCV and 48 of unknown viruses were identified from the field samples. In root, viral diseases were severer in Yeoju than in Mokpo Experiment Station and infection rate was much different depending on sweet potato cultivars.

Molecular Characterization of Five Potyviruses Infecting Korean Sweet Potatoes Based on Analyses of Complete Genome Sequences

  • Kwak, Hae-Ryun;Kim, Jaedeok;Kim, Mi-Kyeong;Seo, Jang-Kyun;Jung, Mi-Nam;Kim, Jeong-Soo;Lee, Sukchan;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.388-401
    • /
    • 2015
  • Sweet potatoes (Ipomea batatas L.) are grown extensively, in tropical and temperate regions, and are important food crops worldwide. In Korea, potyviruses, including Sweet potato feathery mottle virus (SPFMV), Sweet potato virus C (SPVC), Sweet potato virus G (SPVG), Sweet potato virus 2 (SPV2), and Sweet potato latent virus (SPLV), have been detected in sweet potato fields at a high (~95%) incidence. In the present work, complete genome sequences of 18 isolates, representing the five potyviruses mentioned above, were compared with previously reported genome sequences. The complete genomes consisted of 10,081 to 10,830 nucleotides, excluding the poly-A tails. Their genomic organizations were typical of the Potyvirus genus, including one target open reading frame coding for a putative polyprotein. Based on phylogenetic analyses and sequence comparisons, the Korean SPFMV isolates belonged to the strains RC and O with >98% nucleotide sequence identity. Korean SPVC isolates had 99% identity to the Japanese isolate SPVC-Bungo and 70% identity to the SPFMV isolates. The Korean SPVG isolates showed 99% identity to the three previously reported SPVG isolates. Korean SPV2 isolates had 97% identity to the SPV2 GWB-2 isolate from the USA. Korean SPLV isolates had a relatively low (88%) nucleotide sequence identity with the Taiwanese SPLV-TW isolates, and they were phylogenetically distantly related to SPFMV isolates. Recombination analysis revealed that possible recombination events occurred in the P1, HC-Pro and NIa-NIb regions of SPFMV and SPLV isolates and these regions were identified as hotspots for recombination in the sweet potato potyviruses.

A Simple Detection of Sweetpotato Feathery Mottle Virus by Reverse Transcription Polymerase Chain Reaction

  • Jeong Jae-Hun;Chakrabarty Debasis;Kim Young-Seon;Eun Jong-Seon;Choi Yong-Eui;Paek Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.83-86
    • /
    • 2003
  • A reverse transcription polymerase chain reaction (RT-PCR) protocol was developed using two specific 22-mer primers located in coat protein gene of SPFMV. A 411 bp PCR-product was detected in virus infected plants as well as tissue culture raised sweet potato but not in healthy plants. For optimization of RT-PCR protocol, the optimum crude nucleic acid concentration, annealing temperature, primer concentration and numbers of PCR-cycle for maximum sensitivity and specificity were determined. The optimum condition for RT-PCR was as follows: RT-PCR reaction mixture was one-step mixture, containing 50 pmol of primer, 30 units of reverse transcriptase, 5 units of RNasin, and the crude nucleic acid extracts (200 ng). In RT-PCR, cDNA was synthesized at $42^{\circ}C$ for 45 min before a quick incubation on ice after pre-denaturation at $95^{\circ}C$ for 5 min. The PCR reaction was carried out for 40 cycles at $96^{\circ}C$ for 30 see, $63^{\circ}C$ for 30 sec, $72^{\circ}C$ for 1 min, and finally at $72^{\circ}C$ for 10 min. The viral origin of the amplified product was confirmed by sequencing, with the sequence obtained having $95-98\%$ homology with published sequence data for SPFMV. The benefits of this RT-PCR based detection of SPFMV would be simple, rapid and specific.

First Report of Sweet potato latent virus and Sweet potato chlorotic stunt virus Isolated from Sweet Potato in Korea

  • Yun, W.S.;Lee, Y.H.;Kim, K.H.
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.126-129
    • /
    • 2002
  • Infected sweet potato (Ipomoea batatas) showing symptoms of sunken veins, stunting, mosaic, and mottling were collected from Gimje, Cochang, Iksan, and Haenam provinces in Korea. Electron microscopic (EM) observation of the infected tissue revealed rod and filamentous rod type virus particles of various lengths. Western blot analysis of the protein samples extracted from infected sweet potato and partially purified virus identified the isolates as Sweet potato feathery motile virus (SPFMV), Sweet potato latent virus (SwPLV), and Sweet potato chlorotic stint virus (SPCSV). Sweet potatoes were occasionally infected with more than one of these viruses. This is the first report of SwPLV and SPCSV in Korea.

Molecular Detection and Analysis of Sweet potato feathery motile vims from Root and Leaf Tissues of Cultivated Sweet Potato Plants

  • Ryu, Ki-Hyun;Park, Sun-Hee
    • The Plant Pathology Journal
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2002
  • For the molecular detection of Sweet potaio feathery mottle virus (SPFMV) from diseased sweet potato plants, reverse transcription and polymerase chain reaction (RT-PCR) was performed with the use of a set of virus-specific primers to amplify an 816 bp product. The viral coat protein gene was selected for the design of the primers. No PCR product was amplified when Turnip mosaic virus, Potato vims Y or Cucumber mosaic virus were used as template in RT-PCR with the SPFMV-specific primers. The lowest concentration of template viral RNA required for detection was 10 fg. The vim was rapidly detected from total nucleic acids of leaves and roots from the virus-infected sweet potato plants as well as from the purified viral RNA by the RT-PCR. Twenty-four sweet potato samples were selected and analyzed by RT-PCR and restriction fragment length polymorphism (RFLP). RFLP analysis of the PCR products showed three restriction patterns, which resulted in some point mutations suggesting the existence of quasi-species for the vims in the infected sweet potato plants.

The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

  • Kwak, Hae-Ryun;Kim, Mi-Kyeong;Shin, Jun-Chul;Lee, Ye-Ji;Seo, Jang-Kyun;Lee, Hyeong-Un;Jung, Mi-Nam;Kim, Sun-Hyung;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.416-424
    • /
    • 2014
  • Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

Virus Incidence of Sweet Potato in Korea from 2011 to 2014

  • Kim, Jaedeok;Yang, Jung wook;Kwak, Hae-Ryun;Kim, Mi-Kyeong;Seo, Jang-Kyun;Chung, Mi-Nam;Lee, Hyeong-un;Lee, Kyeong-Bo;Nam, Sang Sik;Kim, Chang-Seok;Lee, Gwan-Seok;Kim, Jeong-Soo;Lee, Sukchan;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.467-477
    • /
    • 2017
  • A nationwide survey was performed to investigate the current incidence of viral diseases in Korean sweet potatoes for germplasm and growing fields from 2011 to 2014. A total of 83.8% of the germplasm in Korea was infected with viruses in 2011. Commercial cultivars that were used to supply growing fields were infected at a rate of 62.1% in 2012. Among surveyed viruses, the incidence of five Potyvirus species that infect sweet potato decreased between 2012 and 2013, and then increased again in 2014. Representatively, the incidence of Sweet potato feathery mottle virus (SPFMV) was 87.0% in 2012, 20.7% in 2013 and then increased to 35.3% in 2014. Unlike RNA viruses, DNA viruses were shown to decrease continuously. The incidence of Sweet potato leaf curl virus (SPLCV) was 5.5% in 2003, 59.5% in 2011, and 47.4% in 2012. It then decreased continuously year by year to 33.2% in 2013, and then 25.6% in 2014. While the infection rate of each virus species showed a tendency to decline, the virus infection status was more variable in 2013 and 2014. Nevertheless, the high rate of single infections and mixed infection combinations were more variable than the survey results from 2012. As shown in the results from 2013, the most prevalent virus infection was a single infection at 27.6%, with the highest rate of infection belonging to sweet potato symptomless virus-1 (SPSMV-1) (12.9%). Compared to 2013, infection combinations were more varied in 2014, with a total of 122 kinds of mixed infection.