• Title/Summary/Keyword: SPLCV

Search Result 4, Processing Time 0.019 seconds

Development of a Reliable Technique to Eliminate Sweet potato leaf curl virus through Meristem Tip Culture Combined with Therapy of Infected Ipomoea Species

  • Cheong, Eun-Ju;Hurtt, Suzanne;Salih, Sarbagh;Li, Ruhui
    • Korean Journal of Plant Resources
    • /
    • v.23 no.3
    • /
    • pp.233-241
    • /
    • 2010
  • In vitro elimination of Sweet potato leaf curl virus (SPLCV) from infected sweet potato is difficult due to low number of virus-free plants obtained from meristem tip culture and long growth period required for the virus detection. In this study, efficient production of the SPLCV-free sweet potato by in vitro therapy coupled with a PCR assay for virus detection was investigated. Infected shoots cultured on Murashige and Skoog medium were treated at three different temperatures for 7 weeks followed by meristem tip culture on the medium with or without ribavirin at 50 mg/L. The regenerated plantlets were tested for virus infection by a PCR assay. The results showed that the both heat- and cold-treatments, and addition of the ribavirin did not have significant effect on efficiency of the virus elimination. The meristem size, however, greatly affected the survival rate. Meristems sized over 0.4 mm survived better than smaller ones (0.2-0.3 mm). The PCR assay was approved to be a rapid, sensitive and reliable for the SPLCV detection in regenerated plantlets. Therefore, combination of cultivating meristem tips sized 0.4-0.5 mm on the medium at $22^{\circ}C$ without ribavirin and detection of SPLCV in the regenerated plantlets by the PCR assay was an efficient system for the SPLCV elimination from infected sweet potato.

Virus Disease Incidences of Sweet Potatoes in Korea

  • Kwak Hae-Ryun;Kim Mi-Kyeong;Chung Mi-Nam;Lee Su-Heon;Park Jin-Woo;Kim Kook-Hyung;Choi Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.239-247
    • /
    • 2006
  • In 2003, a survey of sweet potato virus disease was carried out in seed boxes as well as in various sweet potato fields. Virus infection rate was $5\sim100%$ and 100% at seed boxes and fields, respectively. No relationship of the disease incidence and severity was observed between sweet potato cultivating areas and cultivars. A total of 179 samples were collected and analyzed based on serological, electron microscopic and molecular properties. Field-grown sweet potatoes were examined to inspect 8 different viruses using NCM-ELISA, resulting that 30% of sweet potato was infected by one virus, whereas 70% was by more than 2 viruses. However, RT-PCR using primers selected for seven viruses, such as Sweet potato feathery mottle virus (SPFMV) revealed that of one-hundred seventy-nine tested; 71 of SPFMV, 29 of SPGV, 19 of SPFMV+SPGV, 1 of SPFMV+SwPLV, 1 of SPFMV+SPLCV, 2 of SPFMV+SPGV+SwPLV, 6 of SPFMV+SPGV+SPLCV, 2 of SPFMV+SPGV+SwPLV+SPLCV and 48 of unknown viruses were identified from the field samples. In root, viral diseases were severer in Yeoju than in Mokpo Experiment Station and infection rate was much different depending on sweet potato cultivars.

The Current Incidence of Viral Disease in Korean Sweet Potatoes and Development of Multiplex RT-PCR Assays for Simultaneous Detection of Eight Sweet Potato Viruses

  • Kwak, Hae-Ryun;Kim, Mi-Kyeong;Shin, Jun-Chul;Lee, Ye-Ji;Seo, Jang-Kyun;Lee, Hyeong-Un;Jung, Mi-Nam;Kim, Sun-Hyung;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.416-424
    • /
    • 2014
  • Sweet potato is grown extensively from tropical to temperate regions and is an important food crop worldwide. In this study, we established detection methods for 17 major sweet potato viruses using single and multiplex RT-PCR assays. To investigate the current incidence of viral diseases, we collected 154 samples of various sweet potato cultivars showing virus-like symptoms from 40 fields in 10 Korean regions, and analyzed them by RT-PCR using specific primers for each of the 17 viruses. Of the 17 possible viruses, we detected eight in our samples. Sweet potato feathery mottle virus (SPFMV) and sweet potato virus C (SPVC) were most commonly detected, infecting approximately 87% and 85% of samples, respectively. Furthermore, Sweet potato symptomless virus 1 (SPSMV-1), Sweet potato virus G (SPVG), Sweet potato leaf curl virus (SPLCV), Sweet potato virus 2 ( SPV2), Sweet potato chlorotic fleck virus (SPCFV), and Sweet potato latent virus (SPLV) were detected in 67%, 58%, 47%, 41%, 31%, and 20% of samples, respectively. This study presents the first documented occurrence of four viruses (SPVC, SPV2, SPCFV, and SPSMV-1) in Korea. Based on the results of our survey, we developed multiplex RT-PCR assays for simple and simultaneous detection of the eight sweet potato viruses we recorded.

Virus Incidence of Sweet Potato in Korea from 2011 to 2014

  • Kim, Jaedeok;Yang, Jung wook;Kwak, Hae-Ryun;Kim, Mi-Kyeong;Seo, Jang-Kyun;Chung, Mi-Nam;Lee, Hyeong-un;Lee, Kyeong-Bo;Nam, Sang Sik;Kim, Chang-Seok;Lee, Gwan-Seok;Kim, Jeong-Soo;Lee, Sukchan;Choi, Hong-Soo
    • The Plant Pathology Journal
    • /
    • v.33 no.5
    • /
    • pp.467-477
    • /
    • 2017
  • A nationwide survey was performed to investigate the current incidence of viral diseases in Korean sweet potatoes for germplasm and growing fields from 2011 to 2014. A total of 83.8% of the germplasm in Korea was infected with viruses in 2011. Commercial cultivars that were used to supply growing fields were infected at a rate of 62.1% in 2012. Among surveyed viruses, the incidence of five Potyvirus species that infect sweet potato decreased between 2012 and 2013, and then increased again in 2014. Representatively, the incidence of Sweet potato feathery mottle virus (SPFMV) was 87.0% in 2012, 20.7% in 2013 and then increased to 35.3% in 2014. Unlike RNA viruses, DNA viruses were shown to decrease continuously. The incidence of Sweet potato leaf curl virus (SPLCV) was 5.5% in 2003, 59.5% in 2011, and 47.4% in 2012. It then decreased continuously year by year to 33.2% in 2013, and then 25.6% in 2014. While the infection rate of each virus species showed a tendency to decline, the virus infection status was more variable in 2013 and 2014. Nevertheless, the high rate of single infections and mixed infection combinations were more variable than the survey results from 2012. As shown in the results from 2013, the most prevalent virus infection was a single infection at 27.6%, with the highest rate of infection belonging to sweet potato symptomless virus-1 (SPSMV-1) (12.9%). Compared to 2013, infection combinations were more varied in 2014, with a total of 122 kinds of mixed infection.