• Title/Summary/Keyword: SRF of prebored PHC pile

Search Result 4, Processing Time 0.02 seconds

Study(I) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - An Analysis of Sharing Ratio of Skin Friction to Total Bearing Capacity (SRF) by Analyzing Pile Load Test Data - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(I) - 재하시험 자료 분석을 통한 전체지지력에 대한 주면마찰력의 분담율(SRF) 분석 -)

  • Choi, Yongkyu;Lee, Wonje;Lee, Chang Uk;Kwon, Oh-Kyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.17-30
    • /
    • 2019
  • Based on pile load test results for various pile types that were constructed in-situ and pile design data of prebored PHC piles, the ratio of skin friction to total capacity (SRF) was analyzed. A SRF distribution range from the pile load test results for pilot test prebored PHC piles was 42~99% regardless of relative penetration lengths, soil types, and pile load test types. However, a SRF distribution range from the pile design data for prebored PHC piles was 20~53% regardless of relative penetration lengths and pile diameters. Also, a SRF distribution range from the restrike dynamic pile load test results for pretest working prebored PHC piles was a scattered range of 4~83% regardless of pile diameters, relative penetration lengths and soil types. The scattered SRF of pretest working piles was caused to the quality control issue on the filling of cement milk around piles and this quality control issue should be improved. The average SRF calculated by the current design method was estimated to be 2.2 times lower than the average SRF of the pilot test piles. It is because skin friction resistance is calculated at a very low level. Therefore, a new design method for skin friction will be proposed based on this study.

Study(II) on Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Improvement Measures of Current Design Method by Analyzing Current Design Data for Prebored PHC Piles - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(II) - 설계 사례 분석을 통한 매입 PHC말뚝의 설계 개선 방향 -)

  • Yea, Geu Guwen;Yun, Dae Hee;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.8
    • /
    • pp.31-42
    • /
    • 2019
  • A total of 73 pile design data for prebored PHC piles was analyzed to study the current design method. Based on the design data, a ratio of skin friction to total capacity from the pile design data was about 20~53%. Such low ratio of skin friction to total capacity tends to underestimate skin friction. Considering this tendency, the current design method should be improved. Also, an average design efficiency of PHC pile capacity was 70% and an average design efficiency for bearing capacity of soil or weathered rock was 80%, which shows slightly higher value than the former. This is probably due to the fact that the allowable bearing capacity is estimated to be equal to or slightly higher than the design load. Hence, the allowable bearing capacity should be estimated to be higher than the long-term allowable compressive force of the PHC pile. In the current design method, skin friction is calculated to be about 2.2 times lower than end bearing. The current design method for prebored PHC piles applied foreign design methods without any verification of applicability to the domestic soil or rock condition. Therefore, the current design method for prebored PHC piles should be improved.

Study(VII) on Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Allowable Axial Compressive Bearing Capacity Formulae - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VII) - 지반의 허용압축지지력 산정공식 -)

  • Kwon, Oh-Kyun;Nam, Moon S.;Lee, Wonje;Yea, Geu Guwen;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.69-89
    • /
    • 2019
  • Design chart solution and table solution were proposed by Choi et al. (2019a), which conducted a parametric numerical study for the bored PHC piles socketed into weathered rocks through sandy soil layers. Based on the Choi et al. (2019a), the new prediction formulae for mobilized capacity components such as total capacity, total skin friction and skin friction of sand at the settlement of 5% pile diameter were proposed in this study. The proposed prediction formulae (EQ-G1) considers pile diameter, relative embedment length and ${\bar{N}}$ (i.e, corrected N) value and their verification results are as follows. The SRF calculated from the new proposed design method was 71~94%, which are greatly improved compared with results by the existing design method. The design efficiency of bearing capacity was in the range of reasonable design except 4 cases, and the design efficiency of the PHC pile was evaluated as 85%. Therefore, it is possible that allowable compressive load (Pall) of PHC pile can be utilized in the resonable design by means of the new proposed method using EQ-G1 equations. And the other new proposed equations of EQ-G2-3 can be utilized approximately in calculation of axial compressive bearing capacity components for prebored PHC pile.

Study(V) on Development of Charts and Equations Predicting Allowable Compressive Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Analysis of Results and Data by Parametric Numerical Analysis - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연속 연구(V) - 매개변수 수치해석 자료 분석 -)

  • Park, Mincheol;Kwon, Oh-Kyun;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.10
    • /
    • pp.47-66
    • /
    • 2019
  • A parametric numerical analysis according to diameter, length, and N values of soil was conducted for the PHC pile socketed into weathered rock through sandy soil layers. In the numerical analysis, the Mohr-Coulomb model was applied to PHC pile and soils, and the contacted phases among the pile-soil-cement paste were modeled as interfaces with a virtual thickness. The parametric numerical analyses for 10 kinds of pile diameters were executed to obtain the load-settlement relationship and the axial load distribution according to N-values. The load-settlement curves were obtained for each load such as total load, total skin friction, skin friction of the sandy soil layer, skin friction of the weathered rock layer and end bearing resistance of the weathered rock. As a result of analysis of various load levels from the load-settlement curves, the settlements corresponding to the inflection point of each curve were appeared as about 5~7% of each pile diameter and were estimated conservatively as 5% of each pile diameter. The load at the inflection point was defined as the mobilized bearing capacity ($Q_m$) and it was used in analyses of pile bearing capacity. And SRF was appeared above average 70%, irrespective of diameter, embedment length of pile and N value of sandy soil layer. Also, skin frictional resistance of sandy soil layers was evaluated above average 80% of total skin frictional resistance. These results can be used in calculating the bearing capacity of prebored PHC pile, and also be utilized in developing the bearing capacity prediction method and chart for the prebored PHC pile socketed into weathered rock through sandy soil layers.