• Title/Summary/Keyword: SRIO

Search Result 3, Processing Time 0.021 seconds

High Speed Serial Communication SRIO Backplane Implementation for TMS320C6678 (TMS320C6678기반의 고속 직렬통신용 SRIO backplane 구현)

  • Oh, Woojin;Kim, Yangsoo;Kang, Minsoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.683-684
    • /
    • 2016
  • The up-to-date high-performance DSP or FPGA employs SRIO(Serial Rapid IO) as a high-speed serial communications. SRIO is an industry standard regulated upto Ver 3.1. In this study we developed a backplane having a transmission rate to 15Gbps based on a TI DSP. The back plane icould be used to High-speed video transmission, and will be adopted to connecting multiple DSPs for scalable architecture. This paper will discuss the design constraints for a high-speed communication and multiple-core operation.

  • PDF

Performance Evaluation of Interconnection Network in Microservers (마이크로서버의 내부 연결망 성능평가)

  • Oh, Myeong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.91-97
    • /
    • 2021
  • A microserver is a type of a computing server, in which two or more CPU nodes are implemented on a separate computing board, and a plurality of computing boards are integrated on a main board. In building a cluster system, the microserver has advantages in several points such as energy efficiency, area occupied, and ease of management compared to the existing method of mounting legacy servers in multiple racks. In addition, since the microserver uses a fast interconnection network between CPU nodes, performance improvement for data transfers is expected. The proposed microserver can mount a total of 16 computing boards with 4 CPU nodes on the main board, and uses Serial-RapidIO (SRIO) as an interconnection network. In order to analyze the performance of the proposed microserver in terms of the interconnection network which is a core performance issue of the microserver, we compare and quantify the performance of commercial microservers. As a result of the test, it showed up to about 7 times higher bandwidth improvement when transmitting data using the interconnection network. In addition, with CloudSuite benchmark programs used in actual cloud computing, maximum 60% reduction in execution time was obtained compared to commercial microservers with similar CPU performance specification.

Development of High-Speed Real-Time Signal Processing Unit for Small Radio Frequency Tracking Radar Using TMS320C6678 (TMS320C6678을 적용한 소형 Radio Frequency 추적레이다용 고속 실시간 신호처리기 설계)

  • Kim, Hong-Rak;Hyun, Hyo-Young;Kim, Younjin;Woo, Seonkeol;Kim, Gwanghee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.11-18
    • /
    • 2021
  • The small radio frequency tracking radar is a tracking system with a radio frequency sensor that identifies a target through all-weather radio frequency signal processing for a target and searches, detects and tracks the target for the major target. In this paper, we describe the development of a board equipped with TMS320C6678 and XILINX FPGA (Field Programmable Gate Array), a high-speed multi-core DSP that acquires target information through all-weather radio frequency and identifies a target through real-time signal processing. We propose DSP-FPGA combination architecture for DSP and FPGA selection and signal processing, and also explain the design of SRIO for high-speed data transmission.