• Title/Summary/Keyword: STAC protocol

Search Result 5, Processing Time 0.017 seconds

Performance Improvement of STAC Protocol by Grouping the Number of Tags (태그 수 그룹화를 통한 STAC 프로토콜의 성능 개선)

  • Lim, Intaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.807-812
    • /
    • 2015
  • In RFID system, when multiple tags respond simultaneously, a collision can occur. A method that solves this collision is referred as anti-collision algorithm. In 13.56MHz RFID system of Auto-ID center, STAC protocol is defined as an anti-collision algorithm for multiple tag reading. The PS algorithm divides the tags within the identification range of reader into smaller groups by increasing the transmission power incrementally and identifies them. In this paper, we propose a STAC/PS algorithm that the PS algorithm is applied in the STAC protocol. Through simulations, it is demonstrated that the collision rate for the proposed algorithm is about 50% lower than STAC protocol. Therefore, the STAC/PS algorithm can achieve faster tag identification speed compared with STAC protocol due to the low collision rate.

Performance Improvement of STAC Protocol by Early Release of Reply Round and Transmission Probability Control (응답 라운드 조기종료와 전송확률 제어를 통한 STAC 프로토콜의 성능 개선)

  • Lim, Intaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2569-2574
    • /
    • 2013
  • In 13.56MHz RFID system of Auto-ID center, STAC protocol is defined as an anti-collision algorithm for multiple tag reading. In STAC protocol, the reader uses the tag number estimation scheme to determine the number of slots for the next reply round. If errors occur in the estimated number of tags, the identification performances will be degraded due to a lot of collision or idle slots. Therefore, in this paper, we propose an ERPB algorithm that the reader cancels the reply round when it experiences a series of collision or idle slots during the current round. The transmission probability control for the tag is also applied to the proposed algorithm. Through simulations, it is demonstrated that the collision rate for the proposed scheme is about 39% lower than STAC protocol. Therefore, the proposed scheme can achieve faster tag identification time compared with STAC protocol due to the low collision rate.

STAC/PS Algorithm with Tag Grouping by Transmission Power Control (송신 전력 제어에 의한 태그 그룹화 방법을 적용한 STAC/PS 알고리즘)

  • Lim, Intaek;Choi, Jinho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.712-714
    • /
    • 2016
  • The PS algorithm divides the tags within the identification range of reader into smaller groups by increasing the transmission power incrementally and identifies them. In 13.56MHz RFID system of Auto-ID center, STAC protocol is defined as an anti-collision algorithm for multiple tag reading. In this paper, we propose a STAC/PS algorithm that the PS algorithm is applied in the STAC protocol. The simulation results show that the STAC/PS algorithm can achieve faster tag identification speed compared with STAC protocol due to the low collision rate.

  • PDF

Fair Identification Scheme for STAC Protocol in 13.56MHz RFID Systems

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • In RFID System, when multiple tags respond simultaneously, a collision can occur. A method that solves this collision is referred to anti-collision algorithm. In 13.56MHz RFID system, STAC protocol is defined as an anti-collision algorithm for multiple tag reading. In STAC protocol, there is no differentiation between the collided tags and others in the identification process. Therefore, tags may never be successfully identified because its responses may always collide with others. This situation may cause the tag starvation problem. This paper proposes a fair identification scheme for STAC protocol. In the proposed scheme, if the number of collided slots is large during a query round, the reader broadcasts a CollisionRound command to begin a collision round. During the collision round, the reader identifies only tags that are experienced collision during the previous query round.

STAC/EPS Algorithm for Fast Tag Identification in RFID System (RFID 시스템에서 고속 태그 식별을 위한 STAC/EPS 알고리즘)

  • Lim, Intaek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.931-936
    • /
    • 2016
  • The PS algorithm divides the number of tags within the identification range of reader into smaller groups by increasing the transmission power incrementally and identifies them. It limits the number of responding tags by grouping the tags within the identification range of the reader, and thus can reduce the probability of tag collision. Also, in the PS algorithm, the reader takes advantages of the difference of identification ranges. This algorithm uses the fixed frame size at every scan. Therefore, it has problems that the performance can be shown variously according to the number of tags and frame size. In this paper, we propose an EPS algorithm that allocates the optimal frame size by estimating the number of tags at each scan, and apply it into the STAC protocol. The simulation results showed that STAC/EPS algorithm can improve the identification delay about 45% compared with STAC protocol. Also, it provides a stable identification delay regardless of power level increase.