• 제목/요약/키워드: STL

검색결과 303건 처리시간 0.028초

VLM-Slicer에서 절단 경로 생성을 위한 측면 형상 복원 (Surface Reconstruction for Cutting Path Generation on VLM-Slicer)

  • 이상호;안동규;양동열
    • 한국정밀공학회지
    • /
    • 제19권7호
    • /
    • pp.71-79
    • /
    • 2002
  • A new rapid prototyping process, Variable Lamination Manufacturing using a 4-axis-controlled hotwire cutter and expandable polystyrene foam sheet as a laminating material of the part (VLM-S), has been developed to reduce building time and to improve the surface finish of parts. The objective of this study is to reconstruct the surface of the original 3D CAD model in order to generate mid-slice data using the advancing front technique. The generation of 3D layers by a 4 axis-controlled hot-wire cutter requires a completely different procedure to generate toolpath data unlike the conventional RP CAD systems. The cutting path data for VLM-S are created by VLM-Slicer, which is a special CAD/CAM software with automatic generation of 3D toolpath. For the conventional sheet type system like LOM, the STL file would be sliced into 2D data only. However, because of using the thick layers and a sloping edge with the firstorder approximation between the top and bottom layers, VLM-Slicer requires surface reconstruction, mid-slice, and the toolpath data generation as well as 2D slicing. Surface reconstruction demands the connection between the two neighboring cross-sectional contours using the triangular facets. VLM-S employs thick layers with finite thickness, so that surface reconstruction is necessary to obtain a sloping angle of a side surface and the point data at a half of the sheet thickness. In the process of the toolpath data generation the surface reconstruction algorithm is expected to minimize the error between the ruled surface and the original parts..

구강 내 스캐너를 사용하여 CAD/CAM으로 제작된 왁스 코핑의 적합도 평가 (Evaluation of marginal and internal gap of wax coping fabricated by CAD/CAM system using intraoral scanner)

  • 김동연;정일도;이재준;김지환;김명배;김웅철
    • 대한치과기공학회지
    • /
    • 제37권1호
    • /
    • pp.1-7
    • /
    • 2015
  • Purpose: The aim of this study was to evaluate the marginal and internal gap of wax copings fabricated from extraoral scanning with intraoral scanning. Methods: Fifteen study models(abutment of teeth 16) were made by PMMA. STL files of thirty abutment were prepared by intraoral scanning with extraoral scanning. Wax copings of thirty fabricated using CAD/CAM system. Marginal and internal gap of wax copings of thirty were measured by silicone replica technique and digital microscope(${\times}140$). Date were analyzed by using independent samples t-test. Results: Mean (SD) of two group were measured $55.61(27.42){\mu}m$ for totally gap of ES group and $60.67(33.14){\mu}m$ for totally gap of IS group. But marginal and internal gap of two group were not differences statistically significant(p>0.05). Conclusion: Evaluation of marginal and internal gap of two group showed that no differences statistically significant and clinically acceptable results.

Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system

  • Lee, Wan-Sun;Lee, Du-Hyeong;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권4호
    • /
    • pp.265-270
    • /
    • 2017
  • PURPOSE. This study is to evaluate the internal fit of the crown manufactured by CAD/CAM milling method and 3D printing method. MATERIALS AND METHODS. The master model was fabricated with stainless steel by using CNC machine and the work model was created from the vinyl-polysiloxane impression. After scanning the working model, the design software is used to design the crown. The saved STL file is used on the CAD/CAM milling method and two types of 3D printing method to produce 10 interim crowns per group. Internal discrepancy measurement uses the silicon replica method and the measured data are analyzed with One-way ANOVA to verify the statistic significance. RESULTS. The discrepancy means (standard deviation) of the 3 groups are $171.6\;(97.4){\mu}m$ for the crown manufactured by the milling system and 149.1 (65.9) and $91.1\;(36.4){\mu}m$, respectively, for the crowns manufactured with the two types of 3D printing system. There was a statistically significant difference and the 3D printing system group showed more outstanding value than the milling system group. CONCLUSION. The marginal and internal fit of the interim restoration has more outstanding 3D printing method than the CAD/CAM milling method. Therefore, the 3D printing method is considered as applicable for not only the interim restoration production, but also in the dental prosthesis production with a higher level of completion.

3 차원 금속 프린팅을 위한 다중 3 차원 적층 알고리듬(3DL) (Three Dimensional Layering Algorithm for 3-D Metal Printing Using 5-axis)

  • 류수아;지해성
    • 대한기계학회논문집A
    • /
    • 제38권8호
    • /
    • pp.881-886
    • /
    • 2014
  • 5 축 기반 3 차원 금속 프린팅에서는 파트형상에 overhang/undercut 형상이 존재하여도 tilting과 rotating의 2 축을 이용하여 파트형상의 조형 방향을 자유롭게 바꾸어 지지구조물(support structure) 형상피처의 추가 없이 3-D 적층(3DL: 3-D layering)이 가능하게 된다. 이를 위해서는 overhang/undercut의 형상근처에서 국부적으로 tilting과 rotating 정보에 맞는 조형 층 적층 정보를 제공하는 새로운 전처리기(preprocessor) 기능이 필요하게 된다. 본 논문에서는 overhang/undercut 과 같은 형상들을 자동으로 진단하고 검출하여 3 차원 layering 이 가능할 수 있도록 방사형 기울기 측정법(calculation of radial gradient: CRG)과 은유적 자동 분할 알고리듬(implicit auto-partitioning algorithm: IAP)을 통해 다중 적층 알고리듬(Multi-part Layering Algorithm: MPL)을 구현함을 제시하고 이를 실제 STL 형상파일에 적용하여 제시된 이론을 검증하고자 하였다.

한국인 척추 연구를 위한 형상 / 물성 정보 구축 (Geometry and Property Database for Korean Spine Research)

  • 이승복;이상호;한승호;곽대순
    • 한국콘텐츠학회논문지
    • /
    • 제11권10호
    • /
    • pp.488-493
    • /
    • 2011
  • 한국과학기술정보연구원과 가톨릭대학교 의과대학 가톨릭응용해부연구소에서는 척추 연구자들이 쉽게 사용할 수 있는 기초 자료를 구축하고 있다. 척추 형상 정보를 제공하기 위해 60-80대 기증시신 20여 표본을 활용하여 고해상도 척추 (whole spine) CT (pixel dimension : 0.4x mm, thickness: 0.6mm)를 촬영하고 이를 3차원 모델링 소프트웨어(Mimics, Ver.14, Materialise, Belgium)를 사용하여 3차원 형상 모델(shell model, STL format)로 구축하고, 목, 등, 허리 척추의 주요 부위를 계측하여 수치화 하였다. 시신기반 자료의 한계를 극복하기 위해 고령자 호발 질환을 중심으로 대상 환자를 선정하여 X-Ray, CT, BMD 자료를 구축하여 보강하고 있다. 물리적 성질 정보 구축은 기증시신 10여 표본을 활용하여 임상적, 물리적 골밀도를 측정하고, 목척추(cervical), 등척추(thoracic), 허리척추(lumbar) 부분의 굽힘-폄(flexion-extension), 가쪽 굽힘(lateral bending), 회전(torsion), 압축(body/disc compression) 시험을 수행하여 작용력과 굽힘량의 관계를 구축하고 있다. 구축된 물성 시험 결과는 형상 모델과 함께 제공되어 자료의 활용도를 높이고 있으며, 이를 이용하여 한국인 특성이 반영된 척추 관련 연구 및 제품 개발에 활용 될 수 있다.

Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision

  • Jeon, Jin-Hun;Kim, Hae-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권6호
    • /
    • pp.468-473
    • /
    • 2014
  • PURPOSE. This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. MATERIALS AND METHODS. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by $10^{\circ}-20^{\circ}$ and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (${\alpha}=.05$). RESULTS. Precision discrepancies for the canine, premolar, and molar were $3.7{\mu}m$, $3.2{\mu}m$, and $7.3{\mu}m$, respectively, indicating the poorest precision for the molar (P<.001). Trueness discrepancies for teeth types were $6.2{\mu}m$, $11.2{\mu}m$, and $21.8{\mu}m$, respectively, indicating the poorest trueness for the molar (P=.007). CONCLUSION. In respect to accuracy the molar showed the largest discrepancies compared with the canine and premolar. Digitizing of dental impressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.

CAD/CAM 밀링 시스템을 활용한 단일 치관과 3본 교의치의 3D 적합도 평가 (Three-dimensional evaluation of the internal adaptation of single and three-unit fixed dental restoration by CAD/CAM milling system)

  • 김소리;김총명;김웅철;김지환
    • 대한치과기공학회지
    • /
    • 제39권1호
    • /
    • pp.35-42
    • /
    • 2017
  • Purpose: The purpose of this paper was to evaluate the occurrence of errors regarding adaptation by conducting a three-dimensional assessment comparing the bridge type dental restoration after the cutting process, which has multiple abutments, with a single type dental restoration. Methods: By using ten identical files obtained by scanning the master model, thirty designs were created consisting of ten maxillary right first premolars and ten maxillary right first molars with single crown abutments, along with ten bridge designs with the identical abutment. A 5-axis milling machine was used to produce the design file. The produced denture prostheses were scanned using a silicone replica for a STL file. An evaluation was conducted using 3D analysis software on the master model and each of the thirty data files. Results: The RMS value of the pre-molar (14) was $38.4{\pm}4{\mu}m$ for single and $54.7{\pm}6{\mu}m$ for bridge abutment; therefore, a statistically significant difference was observed for single and bridge designs although both shared the same abutment form (P<.05). Also, the RMS value of the molar (16) was $47.6{\pm}2{\mu}m$ and $56.6{\pm}5{\mu}m$ for the single and bridge designs, respectively, thereby presenting a statistically significant difference (P<.05). Conclusion: As a result, dental prosthesis fabricated using the single method presented better internal adaptation outcomes.

Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

  • Rhee, Ye-Kyu;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권6호
    • /
    • pp.460-467
    • /
    • 2015
  • PURPOSE. The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For two-dimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

크루즈선박용 허니컴 패널의 차음 성능 해석 (Analysis of Sound Insulation Performance of Honeycomb Composite Panels for Cruise Ships)

  • 권현웅;홍석윤;노재욱;송지훈
    • 해양환경안전학회지
    • /
    • 제20권2호
    • /
    • pp.234-240
    • /
    • 2014
  • 본 연구에서는 허니컴 패널의 지배방정식을 이용하여 경계행렬식을 유도하였고, 이를 전달행렬법에 적용하여 허니컴 패널을 적용한 차음패널에 대한 해석 이론을 정립하였다. 또한, 허니컴 패널을 선박용 차음패널의 표면재로 적용하여 차음성능을 분석하였고, 철판을 표면재로 적용한 기존의 선박용 차음패널과 차음성능을 무게 당 감음량 기준으로 비교 분석하였다. 그 결과, 허니컴 패널의 차음성능이 0.35 mm 철판에 비해 STC 기준으로 2dB 높게 나와 허니컴 패널을 적용한 차음패널의 차음성능이 철판을 사용한 차음패널에 비해 무게 당 감음량을 고려할 시 우수하다는 것을 확인하였다. 또한, 허니컴 패널을 표면재로 사용한 차음패널의 면밀도가 철판을 사용한 차음패널에 비해 약 $5.2kg/m^2$ 가볍게 나타났고, 이는 약 31.7 % 무게 감소를 의미한다.

열 가압 방식을 사용하여 제작된 인레이 세라믹 수복물의 적합도 평가 (Assessment of inlay ceramic restorations manufactured using the hot-pressing method)

  • 이범일;유승규;유승민;박동인;김지환
    • 대한치과기공학회지
    • /
    • 제42권1호
    • /
    • pp.9-16
    • /
    • 2020
  • Purpose: The purpose of this study was to compare the marginal and internal fit of lithium disilicate ceramic inlay produced by heat pressing that inlay pattern made by subtractive manufacturing and additive manufacturing method. Methods: A mandibular lower first molar that mesial occlusal cavity (MO cavity) die was prepared. After fabricating an epoxy resin model using a silicone impression material, epoxy resin die was scanned with a dental model scanner to design an MO cavity inlay. The designed STL pile was used to fabricate wax patterns and resin patterns, and then lithium disilicate ceramic inlays were fabricated using hot-press method. For the measurement of the marginal and internal gap of the lithium disilicate, silicone replica method was applied, and gap was measured through an optical microscope (x 80). Data were tested for significant differences using the Mann-Whitney Utest. Results: The marginal fit was 103.56±9.92㎛ in the MIL-IN group and 81.57±9.33㎛ in the SLA-IN group, with a significant difference found between the two groups (p<0.05). The internal fit was 120.99±17.52㎛ in the MIL-IN group and 99.18±6.65㎛ in the SLA-IN group, with a significant difference found between the two groups (p<0.05). Conclusion: It is clinically more appropriate to apply the additive manufacturing than subtractive manufacturing method in producing lithium disilicate inlay using CAD/CAM system.