• Title/Summary/Keyword: STL

Search Result 303, Processing Time 0.024 seconds

Dual-scale BERT using multi-trait representations for holistic and trait-specific essay grading

  • Minsoo Cho;Jin-Xia Huang;Oh-Woog Kwon
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.82-95
    • /
    • 2024
  • As automated essay scoring (AES) has progressed from handcrafted techniques to deep learning, holistic scoring capabilities have merged. However, specific trait assessment remains a challenge because of the limited depth of earlier methods in modeling dual assessments for holistic and multi-trait tasks. To overcome this challenge, we explore providing comprehensive feedback while modeling the interconnections between holistic and trait representations. We introduce the DualBERT-Trans-CNN model, which combines transformer-based representations with a novel dual-scale bidirectional encoder representations from transformers (BERT) encoding approach at the document-level. By explicitly leveraging multi-trait representations in a multi-task learning (MTL) framework, our DualBERT-Trans-CNN emphasizes the interrelation between holistic and trait-based score predictions, aiming for improved accuracy. For validation, we conducted extensive tests on the ASAP++ and TOEFL11 datasets. Against models of the same MTL setting, ours showed a 2.0% increase in its holistic score. Additionally, compared with single-task learning (STL) models, ours demonstrated a 3.6% enhancement in average multi-trait performance on the ASAP++ dataset.

Comparison of reproducibility of prepared tooth impression scanning utilized with white and blue light scanners (백색광과 청색광 스캐너를 이용한 지대치 인상체 스캐닝의 반복재현성 비교)

  • Jeon, Jin-Hun;Sung, Hwan-Kyung;Min, Byung-Kuk;Hwang, Jae-Sun;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.213-218
    • /
    • 2015
  • Purpose: The purpose of this study compared of reproducibility of prepared tooth impression scanning utilized with white and blue light scanners. Methods: To evaluate reproducibility with white and blue light scanners, the impression of premolar were rotated by $10^{\circ}{\sim}20^{\circ}$ and scanned. These data were compared with the first 3-D data (STL file), and the error sizes were measured (n=5). Independent t test was used to evaluation the reproducibility of impression of premolar with white versus blue light scanners through discrepancies of mean, RMS (${\alpha}=0.05$). Results: Discrepancies of mean with regard to reproducibility were $11.2{\mu}m$, $5.8{\mu}m$, respectively, with white and blue light scanners (p<0.047). And discrepancies of RMS with regard to reproducibility were $33.4{\mu}m$, $18.8{\mu}m$, respectively, with white and blue light scanners (p<0.045). Conclusion: Our results indicate a good reproducibility of prepared tooth impression digitized with blue light scanner more than that with white light scanner.

Evaluation of Mechanical Properties and Washability of 3D Printed lace/voil Composite Fabrics Manufactured by FDM 3D printing Technology (FDM 3D 프린팅 기술로 제작된 3D 프린팅 레이스/보일 복합직물의 역학적 특성 및 세탁성 평가)

  • Lee, Sunhee
    • Fashion & Textile Research Journal
    • /
    • v.20 no.3
    • /
    • pp.353-359
    • /
    • 2018
  • In this study, fused deposition modellig(FDM) 3D printing technology has been applied directly to polyester voil fabric to produce 3D printed lace/voil composite fabrics. A stereolithograpy(STL) file with a lace type 3D modelling under the various thickness were prepared and transformed into a g-code file using a g-code generator. The extrusion conditions for FDM 3D printing were controlled by 50mm/s of nozzle speed, $235^{\circ}C$ of nozzle temperature, $40^{\circ}C$ of heating bed temperature. 3D printed lace/voil composite fabriscs manufactured by 3D printing based on FDM using a thermoplactic polyurethane(TPU) filaments were obtained. To evaluate the mechanical properties and washability of the fabricated 3D printed lace/voil composite fabric, KES-FB system test, washing fastness test and dry cleaning resistance test were conducted. As 3D printing thickness increased, KOSHI, NUMERI, and FUKURAMI of 3D printed lace/voil composite fabric increased. From the results of the primary hand value test, 3D printed lace/voil composite fabrics were confirmed to be applicable to women's summer garments. As a result of the washability and dry cleaning resistance test of the 3D printed lace/voil composite fabrics, all samples were graded 4-5.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

ACCURACY TESTS OF 3D RAPID PROTOTYPING (RP) MEDICAL MODELS: ITS POTENTIAL AND CLINICAL APPLICATIONS (Rapid Prototyping으로 제작한 3D Medical Model의 오차 측정에 관한 연구 (임상 적용 가능성 및 사례))

  • Choi, Jin-Young;Choi, Jung-Ho;Kim, Nam-Kuk;Lee, Jong-Ki;Kim, Myeng-Ki;Kim, Myung-Jin;Kim, Yeong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.25 no.4
    • /
    • pp.295-303
    • /
    • 1999
  • Presented in this paper are the experimental results that measure rapid prototyping (RP) errors in 3D medical models. We identified various factors that can cause dimensional errors when producing RP models, specifically in maxillofacial areas. For the experiment, we used a human dry skull. A number of linear measurements based on landmarks were first obtained on the skull. This was followed by CT scanning, 3D model reconstruction, and RP model fabrication. The landmarks were measured again on both the reconstructed models and the physical RP models, and these were compared with those on dry skull. We focused on major sources of errors, such as CT scanning, conversion from CT data to STL models, and RP model fabrication. The results show that the overall error from skull to RP is $0.64{\times}0.36mm(0.71{\times}0.66%)$ in absolute value. This indicates that the RP technology can be acceptable in the real clinical applications. A clinical case that has applied RP models successfully for treatment planning and surgical rehearsal is presented. Although the use of RP models is rare in the medical area yet, we believe RP is promising in that it has a great potential in developing new tools which can aid diagnosis, treatment planning, surgical rehearsal, education, and so on.

  • PDF

Finite Element Analysis of Wrist Orthosis with 3D Printing (3D 프린트를 통해 제작된 손목 보조기의 유한요소해석)

  • Choi, Hyeun-Woo;Kang, Inyeong;Noh, Gunwoo;Seo, Anna;Lee, Jong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.947-953
    • /
    • 2019
  • The purpose of this study was to manufacture a wrist brace using a computerized tomography system, clinical design software (MediACE 3D Program), and 3D printer. After acquiring the Dicom file of the upper limb with a computed tomography, the wrist brace was designed using the MediACE 3D Program to create a "stereolithography" file. The designed wrist brace was printed using a 3D printer. To verify the effectiveness of wrist assistive device manufactured by 3D printing technology, the stress distribution of the pressure and orthosis applied to bone and skin is represented by finite element analysis. It is expected that the wrist brace can be manufactured by reinforcing the part where the damage caused by pressure and breakage of the brace frequently occurs with the result of finite element analysis when producing the wrist brace.

Manufacturing a Functional Bolus Using a 3D printer in Radiation Therapy (방사선치료에서 3D 프린터를 이용한 기능적 조직보상체의 제작)

  • Lee, Yi-Seong;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.43 no.1
    • /
    • pp.9-14
    • /
    • 2020
  • Commercial plate bolus is generally used for treatment of surface tumor and required surface dose. We fabricated 3D-printed bolus by using 3D printing technology and usability of 3D-printed bolus was evaluated. RT-structure of contoured plate bolus in the TPS was exported to DICOM files and converted to STL file by using converting program. The 3D-printed bolus was manufactured with rubber-like translucent materials using a 3D printer. The dose distribution calculated in the TPS and compared the characteristics of the plate bolus and the 3D printed bolus. The absolute dose was measured inserting an ion chamber to the depth of 5 cm and 10 cm from the surface of the blue water phantom. HU and ED were measured to compare the material characteristics. 100% dose was distributed at Dmax of 1.5 cm below the surface when was applied without bolus. When the plate bolus and 3D-plate bolus were applied, dose distributed at 0.9 cm and 0.8 cm below the surface of the bolus. After the comparative analysis of the radiation dose at the reference depth, differences in radiation dose of 0.1 ~ 0.3% were found, but there was no difference dose. The usability of the 3D-printed bolus was thus confirmed and it is considered that the 3D-printed bolus can be applied in radiation therapy.

The Study on Acupuncture and Moxibustion Treatment of Delayed Growth (성장장애(成長障碍)의 침구치료(鍼灸治療)에 관(關)한 고찰(考察))

  • Ryu, Seong-Ryong;Lee, Yun-Ho;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 2007
  • Objectives : The objective of this study was to research delayed growth with acupuncture and moxibustion treatment. Methods : We search the oriental medical literature related to delayed growth, especially loose skull, pigeon chest(龜胸), turtle back(龜背), five kinds of flaccidity(五軟), five kinds of retardations(五遲) and infantile malnutrition(疳證). Results : 1. Loose skull is treated with moxibustion therapy of CV8(神厥) and two points(1.5cm upper and under of CV8) 2. Pigeon chest(龜胸) is treated with moxibustion therapy of GB38(外丘), ST18(乳根) and 6 points around of STl7(乳中). 3. Turtle back(龜背) is treated with moxibustion therapy of BLl3(肺兪), BL15(心兪) and BLl7(膈兪) 4. Acupuncture therapy of five kinds of flaccidity(五軟) was rare. but there are one case to stimulate Hwatahyeopcheok point using plum-blossom needle. 5. Five kinds of retardations(五遲) is treated with moxibustion therapy of BLl5(心兪) and two point of medial malleolus 6. Infantile malnutrition(疳證) is treated with acupuncture therapy of the spleen channel and stomach. channel, therapy using three-edged needle, cutting therapy(LUlO(魚際) and Sabong), moxibustion therapy(LRl3(章門) and BL2l(胃兪), and Ch'una therapy. Conclusion: We expect that acupuncture and moxibustion treatment of delayed growth will be applied practically in clinical medicine due to further study on delayed growth.

  • PDF

A study on the machining accuracy of dental digital method focusing on dental inlay

  • Bae, Eun-Jeong;Jeong, Il-Do;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • PURPOSE. The purpose of this study was to compare the cutting method and the lamination method to investigate whether the CAD data of the proposed inlay shape are machined correctly. MATERIALS AND METHODS. The Mesial-Occlusal shape of the inlay was modeled by changing the stereolithography (STL). Each group used SLS (metal powder) or SLA (photocurable resin) in the additive method, and wax or zirconia in the subtractive method (n=10 per group, total n=40). Three-dimensional (3D) analysis program (Geomagic Control X inspection software; 3D systems) was used for the alignment and analysis. The root mean square (RMS) in the 2D plane state was measured within $50{\mu}m$ radius of eight comparison measuring points (CMP). Differences were analyzed using one-way analysis of variance and post-hoc Tukey's test were used (${\alpha}=.05$). RESULTS. There was a significant difference in RMS only in SLA and SLS of 2D section (P<.05). In CMP mean, CMP 4 ($-5.3{\pm}46.7{\mu}m$) had a value closest to 0, while CMP 6 ($20.1{\pm}42.4{\mu}m$) and CMP 1 ($-89.2{\pm}61.4{\mu}m$) had the greatest positive value and the greatest negative value, respectively. CONCLUSION. Since the errors obtained from the study do not exceed the clinically acceptable values, the lamination method and the cutting method can be used clinically.

Development of Graphical Solution for Computer-Assisted Fault Diagnosis: Preliminary Study (컴퓨터 원용 결함진단을 위한 그래픽 솔루션 개발에 관한 연구)

  • Yoon, Han-Bean;Yun, Seung-Man;Han, Jong-Chul;Cho, Min-Kook;Lim, Chang-Hwy;Heo, Sung-Kyn;Shon, Cheol-Soon;Kim, Seong-Sik;Lee, Seok-Hee;Lee, Suk;Kim, Ho-Koung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • We have developed software for converting the volumetric voxel data obtained from X-ray computed tomography(CT) into computer-aided design(CAD) data. The developed software can used for non-destructive testing and evaluation, reverse engineering, and rapid prototyping, etc. The main algorithms employed in the software are image reconstruction, volume rendering, segmentation, and mesh data generation. The feasibility of the developed software is demonstrated with the CT data of human maxilla and mandible bones.