• Title/Summary/Keyword: STRIDE threat modeling

Search Result 21, Processing Time 0.023 seconds

Analyze Virtual Private Network Vulnerabilities and Derive Security Guidelines Based on STRIDE Threat Modeling (STRIDE 위협 모델링 기반 가상 사설망 취약점 분석 및 보안 요구사항 도출)

  • Kim, Da-hyeon;Min, Ji-young;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.27-37
    • /
    • 2022
  • Virtual private network (VPN) services are used in various environments related to national security, such as defense companies and defense-related institutions where digital communication environment technologies are diversified and access to network use is increasing. However, the number of cyber attacks that target vulnerable points of the VPN has annually increased through technological advancement. Thus, this study identified security requirements by performing STRIDE threat modeling to prevent potential and new vulnerable points that can occur in the VPN. STRIDE threat modeling classifies threats into six categories to systematically identify threats. To apply the proposed security requirements, this study analyzed functions of the VPN and formed a data flow diagram in the VPN service process. Then, it collected threats that can take place in the VPN and analyzed the STRIDE threat model based on data of the collected threats. The data flow diagram in the VPN service process, which was established by this study, included 96 STRIDE threats. This study formed a threat scenario to analyze attack routes of the classified threats and derived 30 security requirements for each element of the VPN based on the formed scenario. This study has significance in that it presented a security guideline for enhancing security stability of the VPN used in facilities that require high-level security, such as the Ministry of National Defense (MND).

STRIDE-based threat modeling and DREAD evaluation for the distributed control system in the oil refinery

  • Kyoung Ho Kim;Kyounggon Kim;Huy Kang Kim
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.991-1003
    • /
    • 2022
  • Industrial control systems (ICSs) used to be operated in closed networks, that is, separated physically from the Internet and corporate networks, and independent protocols were used for each manufacturer. Thus, their operation was relatively safe from cyberattacks. However, with advances in recent technologies, such as big data and internet of things, companies have been trying to use data generated from the ICS environment to improve production yield and minimize process downtime. Thus, ICSs are being connected to the internet or corporate networks. These changes have increased the frequency of attacks on ICSs. Despite this increased cybersecurity risk, research on ICS security remains insufficient. In this paper, we analyze threats in detail using STRIDE threat analysis modeling and DREAD evaluation for distributed control systems, a type of ICSs, based on our work experience as cybersecurity specialists at a refinery. Furthermore, we verify the validity of threats identified using STRIDE through case studies of major ICS cybersecurity incidents: Stuxnet, BlackEnergy 3, and Triton. Finally, we present countermeasures and strategies to improve risk assessment of identified threats.

Kubernetes of cloud computing based on STRIDE threat modeling (STRIDE 위협 모델링에 기반한 클라우드 컴퓨팅의 쿠버네티스(Kubernetes)의 보안 요구사항에 관한 연구)

  • Lee, Seungwook;Lee, Jaewoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1047-1059
    • /
    • 2022
  • With the development of cloud computing technology, container technology that provides services based on a virtual environment is also developing. Container orchestration technology is a key element for cloud services, and it has become an important core technology for building, deploying, and testing large-scale containers with automation. Originally designed by Google and now managed by the Linux Foundation, Kubernetes is one of the container orchestrations and has become the de facto standard. However, despite the increasing use of Kubernetes in container orchestration, the number of incidents due to security vulnerabilities is also increasing. Therefore, in this paper, we study the vulnerabilities of Kubernetes and propose a security policy that can consider security from the initial development or design stage through threat analysis. In particular, we intend to present a specific security guide by classifying security threats by applying STRIDE threat modeling.

A Study on Cyber Security Requirements of Ship Using Threat Modeling (위협 모델링을 이용한 선박 사이버보안 요구사항 연구)

  • Jo, Yong-Hyun;Cha, Young-Kyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.657-673
    • /
    • 2019
  • As various IT and OT systems such as Electronic Chart Display and Information System and Automatic Identification System are used for ships, security elements that take into account even the ship's construction and navigation environment are required. However, cyber security research on the ship and shipbuilding ICT equipment industries is still lacking, and there is a lack of systematic methodologies through threat modeling. In this paper, the Data Flow Diagram was established in consideration of stakeholders approaching the ship system. Based on the Attack Library, which collects the security vulnerabilities and cases of ship systems, STRIDE methodologies and threat modeling using the Attack Tree are designed to identify possible threats from ships and to present ship cyber security measures.

Derivation of Security Requirements of Smart TV Based on STRIDE Threat Modeling (STRIDE 위협 모델링에 기반한 스마트 TV 보안 요구사항 도출)

  • Oh, In-Kyung;Seo, Jae-Wan;Lee, Min-Kyu;Lee, Tae-Hoon;Han, Yu-Na;Park, Ui-Seong;Ji, Han-Byeol;Lee, Jong-Ho;Cho, Kyu-Hyung;Kim, Kyounggon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.2
    • /
    • pp.213-230
    • /
    • 2020
  • As smart TVs have recently emerged as the center of the IoT ecosystem, their importance is increasing. If a vulnerability occurs within a smart TV, there is a possibility that it will cause financial damage, not just in terms of privacy invasion and personal information leakage due to sniffing and theft. Therefore, in this paper, to enhance the completeness of smart TV vulnerability analysis, STRIDE threat classification are used to systematically identify threats. In addition, through the manufacture of the Attack Tree and the actual vulnerability analysis, the effectiveness of the checklist was verified and security requirements were derived for the safe smart TV use environment.

A Study on Security Requirements of Electric Vehicle Charging Infrastructure Using Threat Modeling (위협모델링을 이용한 전기차 충전 인프라의 보안요구사항에 대한 연구)

  • Cha, Ye-Seul;Kim, Seung-joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1441-1455
    • /
    • 2017
  • In order to build a secure electric vehicle charging infrastructure, security research is required because various data including charging and payment data are transmitted in the electric vehicle charging infrastructure. However, previous researches have focused on smart grid related security research such as power system infrastructure rather than charging infrastructure for electric vehicle charging. In addition, research on charging infrastructure is still lacking, and research using a systematic methodology such as threat modeling is not yet under way. Therefore, it is necessary to apply threat modeling to identify security threats and systematically analyze security requirements to build a secure electric vehicle charging infrastructure. In this paper, we analyze the electric vehicle charging infrastructure by accurately identifying possible threats and deriving objective security requirements using threat modeling including Data Flow Diagram, STRIDE, and Attack Tree.

Derivation of Security Requirements of Smart Factory Based on STRIDE Threat Modeling (STRIDE 위협 모델링에 기반한 스마트팩토리 보안 요구사항 도출)

  • Park, Eun-ju;Kim, Seung-joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1467-1482
    • /
    • 2017
  • Recently, Interests on The Fourth Industrial Revolution has been increased. In the manufacturing sector, the introduction of Smart Factory, which automates and intelligent all stages of manufacturing based on Cyber Physical System (CPS) technology, is spreading. The complexity and uncertainty of smart factories are likely to cause unexpected problems, which can lead to manufacturing process interruptions, malfunctions, and leakage of important information to the enterprise. It is emphasized that there is a need to perform systematic management by analyzing the threats to the Smart Factory. Therefore, this paper systematically identifies the threats using the STRIDE threat modeling technique using the data flow diagram of the overall production process procedure of Smart Factory. Then, using the Attack Tree, we analyze the risks and ultimately derive a checklist. The checklist provides quantitative data that can be used for future safety verification and security guideline production of Smart Factory.

IP-CCTV Risk Decision Model Using AHP (Cloud Computing Based) (AHP를 활용한 IP-CCTV 위험 결정 모델 (클라우드 컴퓨팅 기반으로))

  • Jung, Sung-hoo;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.229-239
    • /
    • 2018
  • This paper analyzes the problems of existing CCTV and discusses cyber security problems of IP-CCTV in cloud computing environment. In order to reduce the risk of simply removing the risk associated with the provision of cloud services, the risk analysis and counter-measures need to be carried out effectively. Therefore, the STRIDE model as the Threat Risk Modeling is used to analyze the risk factors, and Analytic Hierarchy Process(AHP) is used to measure risk priorities based on the analyzed threats.

A Study on the Security Evaluations and Countermeasure of Exposure Notification Technology for Privacy-Preserving COVID-19 Contact Tracing (COVID-19 동선 추적에서의 프라이버시 보호를 위한 Exposure Notification 기술에 대한 보안성 평가 및 대응 방안 연구)

  • Lee, Hojun;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.5
    • /
    • pp.929-943
    • /
    • 2020
  • Various methods are being presented to identify the movements of COVID-19 infected persons and to protect personal privacy at the same time. Among them, 'Exposure Notification' released by Apple and Google follows a decentralized approach using Bluetooth. However, the technology must always turn on Bluetooth for use, which can create a variety of security threats. Thus, in this paper, the security assessment of 'Exposure Notification' was performed by applying 'STRIDE' and 'LINDDUN' among the security threat modeling techniques to derive all possible threats. It also presented a new Dell that derived response measures with security assessment results and improved security based on them.

Application of Threat Modeling for Security Risk Analysis in Smart Home Service Environment (스마트홈 서비스 환경에서의 보안 위험 분석을 위한 위협 모델링 적용 방안)

  • Lee, Yun-Hwan;Park, Sang-Gun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.76-81
    • /
    • 2017
  • In this paper, the risk analysis of smart home services was implemented by applying threat modeling. Identified possible threats for safe deployment of smart home services and identified threats through the STRIDE model. Through the creation of the Attack Tree, the attackable risk was analyzed and the risk was measured by applying the DREAD model. The derived results can be used to protect assets and mitigate risk by preventing security vulnerabilities from compromising and identifying threats from adversely affecting services. In addition, the modeled result of the derived threat can be utilized as a basis for performing the security check of the smart home service.