• 제목/요약/키워드: Safe working load

검색결과 25건 처리시간 0.025초

MEG4(Mooring Equipment Guideline 4) 적용에 따른 대용량 무어링 피팅 개발 (Development of the Large-Capacity Mooring Fittings according to MEG4(Mooring Equipment Guideline 4))

  • 이명수;서광철;박주신
    • 해양환경안전학회지
    • /
    • 제29권7호
    • /
    • pp.950-957
    • /
    • 2023
  • 선박이 부두에 안전하게 계류 및 예인하기 위해서는 관련 국제규정에 부합하는 설계를 해야 한다. 그러나 현재까지도 일부 소형 조선소 및 설계 회사에서는 그 내용을 정확히 숙지하지 못하고 있는 경우가 많다. 따라서 본 논문에서는 예인 및 계류설비에 관한 국제규정을 살펴보고, 최신 발효된 MEG4(Mooring equipment guideline 4) 기준에 만족하는 대표적인 계류 의장품인 볼라드(Bollard)와 쵸크(Chock)를 개발하고자 한다. 볼라드는 계류 밧줄을 선체에 고박하기 위한 의장품이며, 일반적으로 2개의 기둥으로, 대부분은 8자 매듭 형태로 사용하고 있다. 쵸크는 선외에서 선내로 들어오는 계류 밧줄의 방향을 전환하고, 밧줄의 손상을 방지하기 위하여 곡률을 갖는 주물방식으로 제작한다. 이 두 가지 계류 의장품은 선박의 선수와 선미, 중앙부 측면에서 많이 사용되고 있다. 최근 컨테이너선 및 LNG 운반선의 크기 증가로 인하여, 계류 밧줄 하중이 증가하고 있으며, 계류 의장품도 안전사용하중(Safe working load)이 변경되어야 한다. 본 연구에서는 유한요소해석 모델링을 통한 허용응력 평가법 결과를 정리하고, 분석하였다. 추가적으로 비선형 붕괴 거동 평가를 통하여, 안전사용하중 결정에 대한 검증을 수행하였고, 탄성영역 내 설계가 되었음을 확인하였다. 연구에서 제안하는 평가법 및 기준, 그리고 해석절차는 향후 유사 의장품 개발 시 참조가 가능하다.

냉동창고 출하작업의 신체부담 분석에 관한 연구 (An Analysis of Physical Load of the Shipping Work in Cold Storage Warehouses)

  • 장성록
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.192-198
    • /
    • 1999
  • Work-related musculoskeletal disorders constitute a major source of employee disability and lost wages. Cumulative Trauma Disorders(CTD) refers to a category of physical conditions which result from chronic musculoskeletal injury. Assessment of CTD risk in industry at early stage allows for early control, a safe environment, and a healthier workforce. In this study, the physical load of the shipping work in the cold storage warehouse were especially investigated. Employees were working with almost unnatural posture in a very restricted work space. The questionnaire and biomechanical analysis were used to evaluate the physical load. Results from analyses showed that they were sufficiently exposed to CTD due to repetition and unnatural posture. Based on the analysis, ways for improving working conditions are proposed. The analysis and proposals in this paper will serve as a basic tool for designing/redesigning working environment such as improvement of tools and equipments, design of times for work/rest cycle.

  • PDF

사용전력량에 의한 주방변압기의 최대 부하 예측 (The Peak Load Forecast of Pole-Transformers by Working Electrical Energy)

  • 이동준;한성호;이욱;곽희로;김재철
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 1996년도 추계학술발표회논문집
    • /
    • pp.101-103
    • /
    • 1996
  • This Paper describes Peak load forecasting technique of pole transformers with correlation equation. While customers are demanding safe energy supply, current correlation equation that is used for load management of pole transformers has some problems. To get accurate correlation equation. several correlation equation were examined using past data and nu data collected using the measuring instrument developed for this study. It was recognized that the quadratic equation was the most accurate for peak load forecasting from working electrical energy.

  • PDF

Study on rockburst prevention technology of isolated working face with thick-hard roof

  • Jia, Chuanyang;Wang, Hailong;Sun, Xizhen;Yu, Xianbin;Luan, Hengjie
    • Geomechanics and Engineering
    • /
    • 제20권5호
    • /
    • pp.447-459
    • /
    • 2020
  • Based on the literature statistical method, the paper publication status of the isolated working face and the distribution of the rockburst coal mine were obtained. The numerical simulation method is used to study the stress distribution law of working face under different mining range. In addition, based on the similar material simulation test, the overlying strata failure modes and the deformation characteristics of coal pillars during the mining process of the isolated working face with thick-hard key strata are analyzed. The research shows that, under the influence of the key strata, the overlying strata formation above the isolated working face is a long arm T-type spatial structure. With the mining of the isolated working face, a series of damages occur in the coal pillars, causing the key strata to break and inducing the rockburst occurs. Combined with the mechanism of rockburst induced by the dynamic and static combined load, the source of dynamic and static load on the isolated working face is analyzed, and the rockburst monitoring methods and the prevention and control measures are proposed. Through the above research, the occurrence probability of rockburst can be effectively reduced, which is of great significance for the safe mining of deep coal mines.

주상변압기 최대부하 추정을 위한 수용가 사용전력량 예측 (Working Electrical Energy Forecasting for Peak Load Estimation of Distribution Transformer)

  • 박창호;조성수;김재철;김두봉;윤상윤;이동준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.929-931
    • /
    • 1998
  • This paper describes the peak load forecasting technique of distribution transformers with correlation equation. While customers are demanding safe energy supply, conventional correlation equation that is used for load management of distribution transformers in domestic has some problems. To get accurate correlation equation, se-correlation equation were examined using new collected using the measuring instrument dev for this study. It was recognized that the qua equation was the most accurate for peak forecasting from working electrical energy.

  • PDF

Braking performance of working rail-mounted cranes under wind load

  • Jin, Hui;Chen, Da
    • Wind and Structures
    • /
    • 제19권1호
    • /
    • pp.1-14
    • /
    • 2014
  • Rail-mounted cranes can be easily damaged by a sudden gust of wind while working at a running speed, due to the large mass and high barycenter positions. In current designs, working rail-mounted cranes mainly depend on wheel braking torques to resist large wind load. Regular brakes, however, cannot satisfactorily stop the crane, which induces safety issues of cranes and hence leads to frequent crane accidents, especially in sudden gusts of wind. Therefore, it is necessary and important to study the braking performance of working rail mounted cranes under wind load. In this study, a simplified mechanical model was built to simulate the working rail mounted gantry crane, and dynamic analysis of the model was carried out to deduce braking performance equations that reflect the qualitative relations among braking time, braking distance, wind load, and braking torque. It was shown that, under constant braking torque, there existed inflection points on the curves of braking time and distance versus windforce. Both the braking time and the distance increased sharply when wind load exceeded the inflection point value, referred to as the threshold windforce. The braking performance of a 300 ton shipbuilding gantry crane was modeled and analyzed using multibody dynamics software ADAMS. The simulation results were fitted by quadratic curves to show the changes of braking time and distance versus windforce under various mount of braking torques. The threshold windforce could be obtained theoretically by taking derivative of fitted curves. Based on the fitted functional relationship between threshold windforce and braking torque, theoretical basis are provided to ensure a safe and rational design for crane wind-resistant braking systems.

에너지 대사량을 고려한 인력물자취급시의 생리적 안전 작업하중 모델 개발 (Development of a Model for Physiological Safe Work Load from a Model of Metabolic Energy for Manual Materials Handling Tasks)

  • 김홍기
    • 산업경영시스템학회지
    • /
    • 제27권3호
    • /
    • pp.90-96
    • /
    • 2004
  • The objective of this study was to develop a model for safe work load based on a physiological model of metabolic energy of manual material handling tasks. Fifteen male subjects voluntarily participated in this study. Lifting activities with four different weights, 0, 8, 16, 24kg, and four different working frequencies (2, 5, 8, 11 lifts/min) for a lifting range from floor to the knuckle height of 76cm were considered. Oxygen consumption rates and heart rates were measured during the performance of sixteen different lifting activities. Simplified predictive equations for estimating the oxygen consumption rate and the heart rate were developed. The oxygen consumption rate and the heart rate could be expressed as a function of task variables; frequency and the weight of the load, and a personal variable, body weight, and their interactions. The coefficients of determination ($r^2$) of the model were 0.9777 and 0.9784, respectively, for the oxygen consumption rate and the heart rate. The model of oxygen consumption rate was modified to estimate the work load for the given oxygen consumption rate. The overall absolute percent errors of the validation of this equation for work load with the original data set was 39.03%. The overall absolute percent errors were much larger than this for the two models based on the US population. The models for the oxygen consumption rate and for the work load developed in this study work better than the two models based on the US population. However, without considering the biomechanical approach, the developed model for the work load and the two US models are not recommended to estimate the work loads for low frequent lifting activities.

강관비계의 좌굴특성에 관한 연구 (A Study on the Buckling Characteristics of Steel Pipe Scaffold)

  • 백신원;송인용
    • 한국안전학회지
    • /
    • 제25권1호
    • /
    • pp.57-61
    • /
    • 2010
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Scaffoling is a temporary frame used to support people and material in the construction or repair of buildings and other large structures. It is usually a modular system of metal pipes, although it can be made out of other materials. Bamboo is still used in some Asian countries like China. The purpose of a working scaffold is to provide a safe place of work with safe access suitable for the work being done. In construction site, steel pipes are usually used as scaffolds. In this study, scaffolding systems which is changed according to sleeper and joist space were measured by buckling test. Buckling load of respective scaffolding system was analyzed by structural analysis program(MIDAS). Buckling load of scaffold with/without wall connection and footboard was got by test and structural analysis. According to these results,we know that scaffolding system of case 3 is suitable. Buckling load of scaffold with wall connection is higher than without wall connection. So wall connection is important in scaffoling systems. Footboard in the scaffolding systems is not effective against promotion of buckling load. Finally, the present study results will be used to design scaffolding systems safely in the construction sites.

Design and Safety Performance Evaluation of the Riding Three-Wheeled Two-Row Soybean Reaper

  • Jun, Hyeon-Jong;Choi, Il-Su;Kang, Tae-Gyoung;Kim, Young-Keun;Lee, Sang-Hee;Kim, Sung-Woo;Choi, Yong;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • 제41권4호
    • /
    • pp.288-293
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the key factors in designing a three-wheeled two-row soybean reaper (riding type) that is suitable for soybean production, and ensure worker safety by proposing optimal work conditions for the prototype of the designed machine in relation to the slope of the road. Methods: A three-wheeled two-row soybean reaper (riding type) was designed and its prototype was fabricated based on the local soybean-production approach. This approach was considered to be closely related to the prototype-designing of the cutter and the wheel driving system of the reaper. Load distribution on the wheels of the prototype, its minimum turning radius, static lateral overturning angle, tilt angle during driving, and The working and rear overturning (back flip) angle were measured. Based on the gathered information, investigations were conducted regarding optimal work conditions for the prototype. The investigations took into account driving stability and worker safety. Results: The minimum ground clearance of the prototype was 0.5 m. The blade height of the prototype was adjusted such that the cutter was operated in line with the height of the ridges. The load distribution on the prototype's wheels was found to be 1 (front wheel: F): 1.35 (rear-left wheel: RL): 1.43 (rear-right wheel: RR). With the ratio of load distribution between the RL and RR wheels being 1: 1.05, the left-to-right lateral loads were found to be well-balanced. The minimum turning radius of the prototype was 2.0 m. Such a small turning radius was considered to be beneficial for cutting work on small-scale fields. The sliding of the prototype started at $25^{\circ}$, and its lateral overturning started at $39.3^{\circ}$. Further, the critical slope angle for the worker to drive the prototype in the direction of the contour line on an incline was found to be $12.8^{\circ}$, and the safe angle of slope for the cutting was measured to be less than $6^{\circ}$. The critical angle of slope that allowed for work was found to be $10^{\circ}$, at which point the prototype would overturn backward when given impact forces of 1,060 N on its front wheel. Conclusions: It was determined that farmers using the prototype would be able to work safely in most soybean production areas, provided that they complied with safe working conditions during driving and cutting.

블록 이동용 러그의 안전사용하중 결정에 관한 구조 평가법 (Structural Evaluation Method to Determination Safe Working Load of Block Handling Lugs)

  • 권오현;박주신;서정관
    • 해양환경안전학회지
    • /
    • 제29권4호
    • /
    • pp.363-371
    • /
    • 2023
  • 한 척의 선박을 건조하기 위해서는 다양한 크기의 블록(block)들을 이동 및 탑재해야 한다. 이러한 과정에서 블록의 체결 방법 및 각 조선소 설비 특성에 맞는 다양한 기능에 부합하는 러그를 사용하고 있다. 블록 구조의 중량 및 형태에 따라서 러그의 크기와 형상이 다양하며, 샤클(shackle)이 체결되는 홀 주변에 부족한 강성을 보완하기 위하여 덧판(doubling pad)을 용접하여 구조를 보강한다. 리프팅(lifting) 조건별 러그의 설계를 하는 방법은 보 이론(beam theory)에 의한 수계산 방법과 유한요소해석 모델링을 이용한 구조해석을 수행하고 있다. 해석적 방법의 경우, 요소의 종류와 모델링 방법에 따라서 결과 차이가 발생하여 표준화된 평가법의 정립이 필요한 상황이다. 이러한 모호한 방법론 적용 시 블록의 이동 및 반전(turn-over) 과정 중에서 심각한 안전 문제를 유발할 가능성이 있다. 본 연구에서는 러그의 실제 탑재공정에 따른 구조 응답을 평가할 수 있는 모델링 조건, 평가법을 확정하고자 다양한 변수의 영향을 수치 구조해석을 통하여 비교 및 분석하였다. 러그 홀(hole) 주변 덧판부와 용접 비드(bead)를 표현한 모델링 기법이 가장 실제적인 거동 결과를 주고 있다. 실제 러그와 동일한 조건(용접부 비드만 주재료와 연결)의 모델링에 등가하중을 적용한 결과는 MPC 하중 적용 결과보다 낮은 최종강도를 나타낸다. 더불어 해석 시간 단축을 위해서 2차원 쉘(shell) 요소를 적용한 경우, 덧판 두께를 85% 수준으로 감소시켜서 안전사용하중을 예측할 수 있음을 확인하였다. 논문에서 검토한 다양한 변수의 영향들 결과는 러그 설계 및 안전사용하중 예측에 근거 자료로 활용될 것으로 기대된다.