• Title/Summary/Keyword: Safety Nozzle

Search Result 163, Processing Time 0.022 seconds

Analytical method to estimate cross-section stress profiles for reactor vessel nozzle corners under internal pressure

  • Oh, Changsik;Lee, Sangmin;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.401-413
    • /
    • 2022
  • This paper provides a simple method by which to estimate the cross-section stress profiles for nozzles designed according to ASME Code Section III. Further, this method validates the effectiveness of earlier work performed by the authors on standard nozzles. The method requires only the geometric information of the pressure vessel and the attached nozzle. A PWR direct vessel injection nozzle, a PWR outlet nozzle, a PWR inlet nozzle and a BWR recirculation outlet nozzle are selected based on their corresponding specific designs, e.g., a varying nozzle radius, a varying nozzle thickness and an outlet nozzle boss. A cross-section stress profile comparison shows that the estimates are in good agreement with the finite element analysis results. Differences in stress intensity factors calculated in accordance with ASME BPVC Section XI Appendix G are discussed. In addition, a change in the dimensions of an alternate nozzle design relative to the standard values is discussed, focusing on the stress concentration factors of the nozzle inside corner.

An Experimental Study on Decrease of Noise for Air Nozzle (에어노즐의 소음저감 대책에 관한 연구)

  • Jeon, Seoung-Tae;Kim, Jong-Hyun;Lee, Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.51-56
    • /
    • 2003
  • The goal of this study is to show the way to decrease the noise from air nozzles. The variables of this test are the shapes of air nozzles, air flow rate and the distance between a reflection plate and a nozzle tip. This experiment is aimed to find the most appropriate condition to minimize the noise. These are the results. If diameter ratio is more than 12:8, noise level increases by over 10 dB(A) regradless of the distance between a reflection plate and a nozzle and the existence of a reflection plate. And when $L_2$ of a nozzle is 5mm long, noise level rise relatively highly. So, it is strongly recommended that $L_2$ should be manufactured more than 10mm. The reason for a high intensity noise is that when diameter ratio is more than 12:8, the diameter of a nozzle tip($D_2$) turns small drastically, which increases the air velocity. It is assumed that when the vortes is great around the spots where a nozzle hole is suddenly smaller, great turbulent flow increases much noise.

A Study on Spray Characteristics of Water Mist Nozzle with Mid-low Pressure for Fire Suppression (화재용 중저압 물분무 노즐의 분무특성에 관한 연구)

  • 김성찬;유홍선;박현태;방기영
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2003
  • The present study investigates the spray characteristics of water mist nozzle with mid-low pressure for fire suppression. The examined nozzle types are swirl and spiral nozzle. The result shows that K factor of water mist nozzle is much smaller than those of general sprinkler. Spray angle of spiral nozzle is largest and more than $150^{\circ}$. SMD(Sauter Mean Diameter) of water mist nozzles is ranged between 100 and 200$\mu\textrm{m}$through measuring by image processing method. The spray pattern of spiral nozzle represent that water flux of first stream is 2 times larger than that of second stream. This study will contribute better understandings of the water-mist spray characteristics and useful daia for developing the water-mist nozzles.

Structural Safety of Nozzle Plate using Simulation (시뮬레이션을 이용한 노즐플레이트의 구조안전성)

  • Jung, Jong Yun;Park, Heesung;Kim, Joon-Seob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.3
    • /
    • pp.186-193
    • /
    • 2018
  • Modern manufacturing industries is to produce both precise and robust mechanical parts without failure while they are in service. In order to prevent a part failure for its lifetime, a mechanical design for a part should be examined on a basis of mechanical simulation. A nozzle plate, being a key part in steam engines, changes flow directions of steam in a turbine used in power plant. This paper is to the design and test for part safety and durability. Currently, nozzle plates are fabricated by welding nozzles to their plates. Welding causes some defects on the used materials while they are being manufactured. Another major defect is un-even pitches between welded nozzles. Welding causes phase changes because of high melting temperature of metal. This leads to decay on the welding spots, which weakens their structural strength and then, may lead to early damages on mechanical structures. This research proposes assembly-typed nozzle plate without welding. From the beginning, nozzle and plate are designed for insertion-typed assembly. Nozzle head and foot are designed in accordance with the grooves on outer ring and inner ring of a plate to make mating surfaces. Then the nozzle plate should be proved for structural and fatigue safety before they are put in manufacturing. This research adopts commercial softwares for modeling and mechanical simulation. The test result shows that the design with smaller mating area and deeper insertion produces higher safety in terms of structure and durability. From the conclusion, this paper proposes the assembly-typed nozzle plate to replace the welding typed.

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.

Numerical Study of the Design Factors for Flow Analysis of the Automotive Defrost Nozzle (자동차 Defrost 노즐 유동의 설계인자에 대한 수치적 연구)

  • 박원규;배인호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.217-224
    • /
    • 2003
  • The frost and mist in the windshield disturb the sight of driver and passengers especially in winter. This possibly leads to safety problems. In order to export automobiles to the countries of North America, the safety regulation requires the frost of selected area should be completely melted in 30 minutes. The defrost pattern and time for melting of frost are fully dependent on the flow and temperature field near the windshield. Furthermore, the flow and temperature field near the windshield are dependent on the air discharged from defrost nozzle. The present work has been done for understanding the flow features of the discharged air and internal flow within the nozzle duct. The three dimensional Navier-Stokes code was used for performing the generic A/C duct flow analysis. The present results were nearly coincided with experimental data. To perform the parametric study of the effectiveness of the number of guide vanes, the discharge angle and the location of nozzle were changed. The ratio of volume flow rate through defrost nozzle and side exit were compared to investigate the influence of parameters on the effectiveness of defrost nozzle. The velocity profiles and flow patterns of the defrost nozzle duct were also analyzed.

Numerical Study on Flow Distribution of Fuel Nozzles for a Combustor in a Micro Gas Turbine (마이크로 가스 터빈용 연소기의 연료 노즐의 유량 분배에 관한 수치 해석적 연구)

  • Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Kim, Myungbae;Choi, Byung-Il
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.8-13
    • /
    • 2014
  • Flow distribution of fuel nozzles for a combustor in a micro gas turbine is numerically investigated. The fuel supply system for the present study has 12 single nozzles with a diameter of several hundred micrometers. A uniform temperature distribution of a combustor outlet should be achieved for maximizing the lives of the turbine blades and nozzle guide vanes. For this, it is very important to uniformly supply fuel to a combustor. In order to investigate flow distributions of fuel nozzles, numerical models for fuel nozzles are made and solved by a commercial code, ANSYS FLUENT. An effect of a fuel nozzle diameter and fuel flow rates on flow distribution of fuel nozzles is numerically investigated. As a result, non-uniformity is increasing as a diameter of a single fuel nozzle increases. Finally, an appropriate diameter of a single fuel nozzle is suggested.

A study on Thermo-Structural Analysis of Supersonic Nozzle (초음속 노즐의 열구조 연성 해석에 관한 연구)

  • Kim, Kyung-Sik;Lim, Seol;Kim, Dae-Seung;Cho, Seung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.488-491
    • /
    • 2011
  • The thermo-structural analysis of the solid-fuel propulsion Nozzle is studied to estimate the thermo-structural safety of the metal nozzle. The thermal load is determined to be significantly large, Because the metal nozzle in a short combustion time is directly exposed to high pressure and temperature of combustion gas. Through a analysis result, the influence of a thermal load is estimated and henceforward a design data of thruster is used.

  • PDF

A Study for Improving the Durability of Print Heads in Binder Jet 3D Printers Method (바인더 젯 3D 프린터의 프린팅 헤드 내구성 향상을 위한 연구)

  • Jung-Chul Hwang;Tae-Sung Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.153-158
    • /
    • 2023
  • This research was conducted to reduce the defect rate caused by nozzle clogging of printing heads used in binder jet 3D printers. The binder jet 3D printing technology may adhere to the printing head nozzle by dispersing powder due to mechanical operation such as transferring the printing head and supplying powder, and may cause nozzle clogging by natural curing at the nozzle end depending on the type of binder used. To solve this problem, this study created a cleaning module exclusively for printing heads to check whether the durability of printing heads is improved through analysis of printing results before and after using the cleaning module. To this end, this research used a thermal bubble jet printing head, and the used powder was studied using gypsum powder.

A Numerical Study on the Effect of DVI Nozzle Location on the Thermal Mixing in RVDC

  • Kang, Hyung-Seok;Cho, Bong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.283-288
    • /
    • 1996
  • Direct safety injection into the reactor vessel downcomer annulus(DVI) is a fundamental feature of the KNGR(Korean Next Generation Reactor) four-train safety injection system. The numerical analysis of thermal mixing of ECC(Emergency Core Cooling) water through DVI with the water in the RVDC(Reactor Vessel Downcomer) annulus has been performed, in order to study the impact of nozzle location on the pressurized thermal shock and safety analysis. The results of this study show that the thermal mixing due to the natural circulation induced by the limiting accident conditions is sufficient to prevent temperature in the RVDC from dropping to the level of concern for PTS. When the DVI nozzle is located right above the cold leg, the temperature distribution at the outlet of flow field is most uniform. The tool used for numerical analysis is CFDS-FLOW3D.

  • PDF