• Title/Summary/Keyword: Safety-Critical Systems

Search Result 472, Processing Time 0.031 seconds

A Process Model for the Systematic Development of Safety-Critical Systems (안전중시 시스템을 위한 체계적인 설계 프로세스에 관한 연구)

  • Yoon, Jae-Han;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • It is becoming more and more important to develop safety-critical systems with special attention. Examples of the safety-critical systems include the mass transportation systems such as high speed trains, airplanes, ships and so forth. Safety critical issues can also exist in the development of atomic power plants that are attracting a great deal of attention recently as oil prices are sky-rocketing. Note that the safety-critical systems are in general large-scale and very complex for which case the effects of adopting the systems engineering (SE) approach has been quite phenomenal. Furthermore, safety-critical requirements should necessarily be realized in the design phase and be effectively maintained thereafter. In light of these comments, we have considered our approach to developing safety-critical systems to be based on the method combining the systems engineering and safety management processes. To do so, we have developed a design environment by constructing a whole life cycle model in two steps. In the first step, the integrated process model was developed by integrating the SE (ISO/IEC 15283) and systems safety (e.g., hazard analysis) activities and implemented in a computer-aided SE tool environment. The model was represented by three hierarchical levels: the life-cycle level, the process level, and the activity level. As a result, one can see from the model when and how the required SE and safety processes have to be carried out concurrently and iterately. Finally, the design environment was verified by the computer simulation.

Design of safety critical and control systems of Nuclear Power Plants using Petri nets

  • Singh, Pooja;Singh, Lalit Kumar
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1289-1296
    • /
    • 2019
  • Non-functional requirements plays a critical role in designing variety of applications domain ranges from safety-critical systems to simple gaming applications. Performance is one of the crucial non-functional requirement, especially in control and safety systems, that validates the design. System risk can be quantified as a product of probability of system failure and severity of its impact. In this paper, we devise a technique to do the performance analysis of safety critical and control systems and to estimate performance based risk factor. The technique elaborates Petri nets to estimate performability to ensure system dependability requirements. We illustrate the technique on a case study of Nuclear Power Plant system. The technique has been validated on 17 safety critical and control systems of Nuclear Power Plant.

Safety Evaluation on Real Time Operating Systems for Safety-Critical Systems (안전필수(Safety-Critical) 시스템의 실시간 운영체제에 대한 안전성 평가)

  • Kang, Young-Doo;Chong, Kil-To
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3885-3892
    • /
    • 2010
  • Safety-Critical systems, such as Plant Protection Systems in nuclear power plant, plays a key role that the facilities can be operated without undue risk to the health and safety of public and environment, and those systems shall be designed, fabricated, installed, and tested to quality standards commensurate with the importance of the functions to be performed. Computer-based Instrumentation and Control Systems to perform the safety-critical function have Real Time Operating Systems to control and monitoring the sub-system and executing the application software. The safety-critical Real Time Operating Systems shall be designed, analyzed, tested and evaluated to have capability to maintain a high integrity and quality. However, local nuclear power plants have applied the real time operating systems on safety critical systems through Commercial Grade Item Dedication method, and this is the reason of lack of detailed methodology on assessing the safety of real time operating systems, expecially to the new developed one. This paper presents the methodology and experiences of safety evaluation on safety-critical Real Time Operating Systems based upon design requirements. This paper may useful to develop and evaluate the safety-critical Real Time Operating Systems in other industry to ensure the safety of public and environment.

Performance evaluation of safety-critical systems of nuclear power plant systems

  • Kumar, Pramod;Singh, Lalit Kumar;Kumar, Chiranjeev
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.560-567
    • /
    • 2020
  • The complexity of safety critical systems of Nuclear Power Plant continues to increase rapidly due its transition from analog to digital systems. It has thus become progressively more imperative to model these systems prior to their implementation in order to meet the high performance, safety and reliability requirements. Timed Petri Nets (TPNs) have been widely used to model such systems for non-functional analysis. The paper presents a novel methodology for the analysis of the performance metrics using PN modeling. The paper uses the isomorphism property of the TPNs and the Markov chains for the performance analysis of the safety critical systems. The presented methodology has been validated on a Shutdown System of a Nuclear Power Plant.

A Study on the Software Fault Modes and Effect Analysis for Software Safety Evaluation (소프트웨어 안전성 평가를 위한 소프트웨어 고장 유형과 영향 분석에 관한 연구)

  • Kim, Myong-Hee;Park, Man-Gon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.115-130
    • /
    • 2012
  • These days, most of safety-critical systems, which are systems those failures or malfunction may result in death or serious injury to people, or loss or severe damage to social systems, or environmental harm, are being built of embedded software or loaded controlling software systems on computers, electrical and electronic components or devices. There are a lot kind of fault analysis methods to evaluate safety of the safety-critical systems equipped computers, electrical and electronic components or devices with software. However, the only assessment method to evaluate software safety of a safety-critical system is not enough to analysis properly on account of the various types and characteristic of software systems by progress of information technology. Therefore, this paper proposes the integrated evaluation method and carries out a case study for the software safety of safety-critical system which embedded or loaded software sizes are small and control response times are not sensitive by use of two security analysis methods which are Fault Tree Analysis (FTA) and Fault Modes and Effect Analysis (FMEA) for ubiquitous healthcare system.

A Quantitative Study on Important Factors of the PSA of Safety-Critical Digital Systems

  • Kang, Hyun-Gook;Taeyong Sung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.596-604
    • /
    • 2001
  • This paper quantitatively presents the effects of important factors of the probabilistic safety assessment (PSA) of safety-critical digital systems. The result which is quantified using fault tree analysis methodology shows that these factors remarkably affect the system safety. In this paper we list the factors which should be represented by the model for PSA. Based on the PSA experience, we select three important factors which are expected to dominate the system unavailability. They are the avoidance of common cause failure, the coverage of fault tolerant mechanisms and software failure probability. We Quantitatively demonstrate the effect of these three factors. The broader usage of digital equipment in nuclear power plants gives rise to the safety problems. Even though conventional PSA methods are immature for applying to microprocessor-based digital systems, practical needs force us to apply it because the result of PSA plays an important role in proving the safety of a designed system. We expect the analysis result to provide valuable feedback to the designers of digital safety- critical systems.

  • PDF

On the Use of SysML Models in the Construction of the Design Process for Safety-Critical Systems (안전중시 시스템의 설계프로세스 구축에서 SysML 모델의 활용에 관한 연구)

  • Kim, Young Min;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.3
    • /
    • pp.7-17
    • /
    • 2013
  • The recent trend in modern systems development can be characterized by the increasing complexity in terms of both the functionality and HW/SW scale that seems to be accelerated by the growing user requirements and the rapid advancement of technology. Among the issues of complexity, the one related to systems safety has attracted great deal of attention lately in the development of the products ranging from mass-transportation systems to defence weapon systems. As such, the incorporation of safety requirements in systems development is becoming more important. Note, however, that since such safety-critical systems are usually complex to develop, a lot of organizations and thus, engineers should participate in the development. In general, there seems to be a variety of differences in both the breadth and depth of the technical background they own. To address the problems, at first this paper presents an effective design process for safety-critical systems, which is intended to meet both the systems design and safety requirements. The result is then advanced to obtain the models utilizing the systems modeling language (SysML) that is a de facto industry standard. The use of SysML can facilitate the construction of the integrated process and also foster active communication among many participants of diverse technical backgrounds. As a case study, the model-based development of high-speed trains is discussed.

On Coping with the Design Change Request by Utilizing DB Traceability in the Operational Phase of Safety-critical Weapon Systems (운영단계 안전중시시스템에서 제기되는 설계변경요구에 대해 아키텍처 DB의 추적성을 통한 변경프로세스의 개선)

  • Kim, Young Min;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.1
    • /
    • pp.69-77
    • /
    • 2014
  • The environment and requirements of modern war fields have been affected and thus changed by a variety of issues. To this end, the development of safety-critical weapon systems frequently need to meet those changes even in the operational phase. The necessity of the changes may be due to the preparation for mass-production or the request originated from the user military forces. To meet such a need can be even tougher in the development of safety-critical weapon systems since the integration of the requirements for both systems design and systems safety would make it troublesome. To handel the matter in this paper, utilization of architecture DB is proposed. Specifically, the situation in demand has first been analyzed and then a problem-solving process to accommodate the design changes has been constructed. In doing so, the concept of the aforementioned integration is particularly focused on the functional architecture, which could be a core concept of our approach to solving the problem. The result of a case study demonstrating the method studied using a computer-aided systems engineering tool is also presented.

On Reducing Systemic Failure of Safety-Critical Systems by DSM-based Systematic Design of Interfaces (안전중시 시스템에서 DSM 기반 인터페이스 설계를 통한 시스템 오류 감축에 관한 연구)

  • Jung, Ho-Jeon;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.93-101
    • /
    • 2015
  • The demand from customers on better products and systems seems to be ever increasing. To meet the demand, the systems are becoming more and more complicated in terms of both scale and functionality, thereby requiring enormous effort in the development. One bright spot of this trend is that such effort has been the driving forces of the remarkable advancement in modern systems development. On the other hand, safety issues appear to be critical in many large-scale systems such as transportation and weapon systems including high-speed trains, airplanes, ships, missiles/rockets launchers, and so on. Such systems turn out to be prone to a variety of faults and thus the resultant failure can cause disastrous accidents. For the reason, they can be referred to as safety-critical systems. The systems failure can be attributed to either random or systemic factors (or sometimes both). The objective of this paper is on how to reduce potential systemic failure in safety critical systems. To do so, a proper system design is pursued to minimize the risk of systemic failure. A focus is placed on the fact that complex systems have a lot of complicated interfaces among the system elements. To effectively handle the sources of hazards at the complicated interfaces and resultant failure, a method is developed by utilizing a design structure matrix. As a case study, the developed method is applied in the design of train control systems.

SCADE and Safety-critical developement (SCADE와 Safety-critical 개발)

  • Jung, Sung-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1420-1424
    • /
    • 2011
  • When it developes the railway system, safety is one of the most important and necessary things. SCADE SUITE has been used in many systems, like plane, transportation, nuclear power, etc, who have high priority to safety. This document introduces where SCADE SUITE has been used and describes how develope safety-critical system with SCADE.

  • PDF