• 제목/요약/키워드: Sailing attitude prediction

검색결과 6건 처리시간 0.025초

Prediction of velocity and attitude of a yacht sailing upwind by computational fluid dynamics

  • Lee, Heebum;Park, Mi Yeon;Park, Sunho;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.1-12
    • /
    • 2016
  • One of the most important factors in sailing yacht design is accurate velocity prediction. Velocity prediction programs (VPP's) are widely used to predict velocity of sailing yachts. VPP's, which are primarily based on experimental data and experience of long years, however suffer limitations when applied in realistic conditions. Thus, in the present study, a high fidelity velocity prediction method using computational fluid dynamics (CFD) was proposed. Using the developed method, velocity and attitude of a 30 feet sloop yacht, which was developed by Korea Research Institute of Ship and Ocean (KRISO) and termed KORDY30, were predicted in upwind sailing condition.

30ft급 쌍동형 세일링 요트의 항주자세에 따른 실선저항 및 모멘트 추정에 대한 연구 (A Study on the Ship Resistance and Moment Prediction for Running Attitude of 30 Feet Catamaran Sailing Yacht)

  • 박충환;장호윤;정진욱;이병성;전호환
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.321-327
    • /
    • 2010
  • During sailing by wind-driven thrust on the sail, a catamaran sailing yacht generates leeway and heeling. For estimating resistance and moment prediction of a real ship by changing of running attitude, a model test of the ship has to be carried out. This study aims at establishing experimental techniques for a catamaran sailing yacht by changed attitude during running direction. Through the model test, drag and side force of the real ship are predicted. Also through experiment, rolling and yawing moments were considered.

예인수조 시험 및 VPP 계산에 의한 세일링 요트의 성능 추정 (Performance Predictions for Sailing Yacht by Towing Tests and VPP Calculation)

  • 유재훈;안해성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.116-124
    • /
    • 2006
  • A model test was carried out, in order to verify the hydrodynamic performances of public 30 feet class sailing yacht. In the initial design stage, the performances and the running attitude of sail yacht including the hull form and sail plan, appendages were estimated by VPP, from which made the representative test conditions. A new experiment system such as captive model device was composed because the running attitude could be changed by wind conditions. The test results show that the minimum resistance is generated in the heeling 20 degree. which was expected in the initial design stage. It is thought to be the useful informations that the keel has an effects on hydrodynamic forces and resistance differences between the upwind and the downwind condition. Also this paper is associated with the state-of-the-art of calculating sailing yacht performance as this is performed in velocity Prediction program (VPP) The VPP results shows a typical shape of a sailing yacht and the designed yacht has the best performance at 120 degree angle of true wind with 20 knots.

세일링 요트의 성능 추정에 관한 연구 (Performance Predictions for Sailing Yacht)

  • 유재훈;안해성
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.824-831
    • /
    • 2005
  • A model test was carried out, in order to verify the hydrodynamic performances of public 30 feet class sailing yacht. In the initial design stage, the performances and the running attitude of sail yacht including the hull form and sail plan, appendages were estimated by VPP, from which made the representative test conditions. A new experiment system such as captive model device was composed because the running attitude could be changed by wind conditions. The test results show that the minimum resistance is generated in the heeling 20 degree, which was expected in the initial design stage. It is thought to be the useful informations that the keel has an effects on hydrodynamic forces and resistance differences between the upwind and the downwind condition. Also this paper is associated with the state-of-the-art of calculating sailing yacht performance as this is performed in velocity prediction program (VPP). The VPP results shows a typical shape of a sailing yacht and the designed yacht has the best performance at 120 degree angle of true wind with 20 knots.

  • PDF

30ft급 쌍동형 세일링 요트의 선체 유체력 계측에 의한 세일력 추정방법에 관한 연구 (A Study on the Sail Force Prediction Method for Hull Hydrodynamic Force Measurement of 30feet Catamaran Sailing Yacht)

  • 장호윤;박충환;김헌우;이병성;이인원
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.477-486
    • /
    • 2010
  • During sailing by wind-driven thrust on the sail, a catamaran sailing yacht generates leeway and heeling. For predicting sail force, a model test was carried out according to running attitude. Through the model test, drag and side force of the real ship was predicted. A purpose of this study is to find sail force to C.E from changed attitude during running direction. By balance of hull and sail, a heeling force of designed sail is predicted. Also through heeling force and driving force, total sail force and direction from C.E are considered with changed mast including leeway and heeling.

30피트급 요트의 유체력에 대한 실험적 연구 (Experimental Study on the Hydrodynamic Forces of 30 Feet Sailing Yacht)

  • 유재훈;안해성
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.233-240
    • /
    • 2005
  • A model test was carried out, in order to verify the hydrodynamic performances of public 30 feet class sailing yacht. In the initial design stage, the performances and the running attitude of sail yacht including the hull form and sail plan, appendages were estimated by VPP, from which made the representative test conditions. A new experiment system such as captive model device was composed because the running attitude could be changed by wind conditions. The test results show that the minimum resistance is generated in the heeling 20 degree, which was expected in the initial design stage. It is thought to be the useful informations that the keel has au effects on hydrodynamic forces and resistance differences between the upwind and the downwind condition.