• Title/Summary/Keyword: Salinity

Search Result 3,118, Processing Time 0.042 seconds

Spatio-Temporal Variations of Paddy and Water Salinity of Gunnae Reclaimed Tidelands in Western Coastal Area of Korea (서해안 군내간척지 담수호 및 농경지 염류의 시공간적 분포 특성 분석)

  • Beom, Jina;Jeung, Minhyuk;Park, Hyun-Jin;Choi, Woo-Jung;Kim, YeongJoo;Yoon, Kwang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • To understand salinity status of fresh water and paddy soils and the susceptibility of rice to salinity stress of Gunnae reclaimed tidelands, salinity monitoring was conducted in rainy and dry seasons. For fresh water, a high salinity was observed at the sampling location near the sluice gate and decreased with distance from the gate. This spatial pattern of fresh water salinity indicates the necessity of spatial distribution of salinity in the assessment of salinity status of fresh water. Interestingly, there was significant correlation between rainfall amount and salinity, implying that salinity of fresh water varies with rainfall and thus it may be possible to predict salinity of water using rainfall. Soil salinity also higher near the gate, reflecting the influence of high saline water. In addition, the groundwater salinity also high to threat rice growth. Though soil salinity status indicated low possibility of sodium injury, there was changes in soil salinity status during the course of rice growth, suggesting that more intensive monitoring of soil salinity may be necessary for soil salinity assessment. Our study suggests the necessity of intensive salinity monitoring to understand the spatio-temporal variations of salinity of water and soil of reclaimed tideland areas.

Comparison of Salinity and Sodium Content by the Salinity Measurement Frequency of Soups of Childcare Centers Enrolled in the Center for Children's Food Service Management in Daegu (대구지역 어린이급식관리지원센터 등록 어린이급식소의 염도 측정 빈도에 따른 국의 염도 및 나트륨 함량 비교)

  • Lee, Na-Yeong;Lee, Yeon-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.25 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Objectives: This study examined the salinity of soups provided at childcare centers by measuring the salinity for three years and providing basic data for sodium reduction. Methods: The soup salinity was measured using a Bluetooth salinity meter from January 2015 to December 2017 at 80 childcare foodservice establishments enrolled in the Suseong Center for Children's Foodservice Management in Daegu. Results: An analysis of the soup salinity each year showed that the salinity decreased significantly from 0.48% in 2015 to 0.41% in 2017, particularly in clear soups and soybean soups compared to other soups (P < 0.05). The salinity and sodium content in seafood soups (0.45% and 179.1 mg/100 g, respectively) were highest, followed by soybean soups (0.44%, 175.2 mg/100 g), with perilla seed soups containing the lowest (0.42%, 167.2 mg/100 g) (P < 0.05). The salinity was significantly higher in institutional foodservice establishments than small foodservice establishments (P < 0.001). The salinity and sodium content were the highest in foodservice establishments with a small number of measurements, and the salinity was the lowest in foodservice establishments with salinity measurements performed an average of 151 times each year (three times a week) or more (P < 0.05). The soup salinity was low in the order of winter, spring, summer, and autumn, and the salinity decreased significantly year by year in all seasons. (P < 0.05). Conclusions: The soup salinity was significantly lower in foodservice establishments where the salinity was measured more than three times a week, indicating that continuous salinity management is effective.

Formation and Distribution of Low Salinity Water in East Sea Observed from the Aquarius Satellite (Aquarius 염분 관측 위성에 의한 동해 저염수의 형성과 유동 연구)

  • Lee, Dong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.2
    • /
    • pp.187-198
    • /
    • 2018
  • The monthly salinity maps from Aquarius satellite covering the entire East Sea were produced to analyze the low-salinity water appearing in fall every year. The low-salinity water in the northern East Sea began to appear in May-June, spreading southward along the coast and eastward north of the subpolar front. Low-salinity water from the East China Sea entered the East Sea through the Korea Strait from July to September and was mixed with low-salinity water from the northern East Sea in the Ulleung Basin. The strength of the low-salinity water from the East China Sea was dependent on the strength of the southerly wind of the East China Sea in July-August. The salinity reaches a minimum in September with a distribution parallel to the latitude of $37.5^{\circ}N$. In October, low salinity water is distributed along the mean current path and subpolar front and the entire East Sea is covered with the low salinity water in November. Water with salinity larger than 34 psu starts to flow into the East Sea through the Korea Strait in December and it expands gradually northward up to the subpolar front in January- February.

Comparison of Salinity of Soups on the Use of Bluetooth Salinity Meter at Childcare Centers in Anyang Area (안양지역 어린이집에서의 블루투스 염도계 사용에 따른 국의 염도 비교)

  • Kim, Hye Won;Pie, Jae Eun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.435-443
    • /
    • 2020
  • We analyzed whether the use of the Bluetooth salinity meter could affect the proper level of salinity in childcare centers. This study was conducted on childcare centers that wish to participate in the sodium reduction project (Bluetooth salinity meter using group, BG) and those that did not participate (Bluetooth salinity meter not using group, NG) among childcare centers registered with Center for Children's Foodservice Management in Anyang from January to December 2019. As a result of comparing the salinity and sodium contents of the soup according to whether or not a Bluetooth salinity meter was used, the salinity and sodium contents of BG was significantly lower than that of NG (p < 0.0001). Salinity and sodium contents in soups tended to decrease as the number of use of the Bluetooth salinity meter increased (p = 0.020). In conclusion, Bluetooth salinity meter can be used as a means to induce voluntary salinity control by cookers regarding sodium reduction education at childcare centers.

Estimation Method of Airborne Salinity for Durability Design of Reinforced Concrete Structure (철근콘크리트 구조물의 내구성 설계를 위한 비래염분 추정방법)

  • Ham, Hee Jung
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.29-36
    • /
    • 2007
  • A comparative study of airborne salinity and sea wind was done for a coastal area, Sokcho city, of East Sea in Kangwon province, Korea. In this study, a relationship between the formation of airborne salinity and wind velocity was investigated, and then the airborne salinity was simulated and forecasted by the obtained wind-salinity characteristics. It is founded that most airborne salinity is brought by sea winds with the occurrence of velocity, higher than and equal to 4m/s, while the occurrence of lower wind velocities (ie., lower than 4m/s) in sea wind and the occurrence of inland wind give diluted effects on the airborne transfer. By using these characteristics and a proposed linear equation model, the salinity in Sokcho city is successfully simulated and forecasted. It is expected that the linear equation model may be useful for durability design of concrete structures under the conditions of chloride attack, induced by the airborne salinity.

  • PDF

Salinity Tolerance of Progenies between Korean Cultivars and IRRI's New Plant Type Lines in Rice

  • Lee, Seung-Yeob;Dharmawansa Senadhira
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.234-238
    • /
    • 1998
  • To select new germplasm for salinity tolerance from new plant type (NPT) breeding lines, the sixty F$_4$ lines selected from the crosses between Korean cultivars and IRRI's NPT lines were evaluated for salinity tolerance at the seedling stage with salinized culture solution (EC=12 dS/m) in the controlled conditions. Two NTP lines derived from a cross between 'Ilmibyeo' and 'IR66152-AC5-1', 'HR15258-7-1' and 'HR15258-27-1', were found to have good tolerance. The salinity tolerance of the lines was compared to their parents and the sensitive ('IR29') and tolerant ('Pokkali') checks in three salinity levels, no salinity (control) and an EC of 12 and 16 dS/m. Visual salinity score, shoot Na+ and Na-K ratio in two NPT lines was significantly low compared with the parents and IR29. Indicating that salinity tolerance of the lines might be derived from a transgressive segregation. The relative water content of the lines was higher than Pokkali, and the dry weight of shoot and root was proportionally decreased to salinity score and salinizing concentration. The visual salinity scores were significantly correlated with shoot Na concentration, Na-K ratio, relative water content, and reduction of dry weight (P<0.01). Their tolerance was attributed to root and shoot characteristics that led to high shoot water content, thus diluting the toxic effect of salts.

  • PDF

Assessing Temporal and Spatial Salinity Variations in Estuary Reservoir Using EFDC (염분수지 및 EFDC 모형을 이용한 간척 담수화호 염도변화모의)

  • Seong, Choung Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.139-147
    • /
    • 2014
  • Forecasting salinity in an estuary reservoir is essential to promise irrigation water for the reclaimed land. The objective of the research was to assess salinity balance and its temporal and spatial variations in the Iwon estuary reservoir which has been issued by its high contents of salinity in spite of desalination process for four years. Seepage flows through the see dikes which could be one of possible reason of high salinity level of the reservoir was calculated based on the salinity balance in the reservoir, and used as input data for salinity modeling. A three-dimensional hydrodynamic model, Environmental Fluid Dynamics Code (EFDC), was used to simulate salinity level in the reservoir. The model was calibrated and validated based on weekly or biweekly observed salinity data from 2006 to 2010 in four different locations in the reservoir. The values of $R^2$, RMSE and RMAE between simulated and observed salinity were calculated as 0.70, 2.16 dS/m, and 1.72 dS/m for calibration period, and 0.89, 1.15 dS/m, and 0.89 dS/m for validation period, respectively, showing that simulation results was generally consistent with the observation data.

Accuracy and Error Characteristics of SMOS Sea Surface Salinity in the Seas around Korea

  • Park, Kyung-Ae;Park, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.356-366
    • /
    • 2020
  • The accuracy of satellite-observed sea surface salinity (SSS) was evaluated in comparison with in-situ salinity measurements from ARGO floats and buoys in the seas around the Korean Peninsula, the northwest Pacific, and the global ocean. Differences in satellite SSS and in-situ measurements (SSS errors) indicated characteristic dependences on geolocation, sea surface temperature (SST), and other oceanic and atmospheric conditions. Overall, the root-mean-square (rms) errors of non-averaged SMOS SSSs ranged from approximately 0.8-1.08 psu for each in-situ salinity dataset consisting of ARGO measurements and non-ARGO data from CTD and buoy measurements in both local seas and the ocean. All SMOS SSSs exhibited characteristic negative bias errors at a range of -0.50- -0.10 psu in the global ocean and the northwest Pacific, respectively. Both rms and bias errors increased to 1.07 psu and -0.17 psu, respectively, in the East Sea. An analysis of the SSS errors indicated dependence on the latitude, SST, and wind speed. The differences of SMOS-derived SSSs from in-situ salinity data tended to be amplified at high latitudes (40-60°N) and high sea water salinity. Wind speeds contributed to the underestimation of SMOS salinity with negative bias compared with in-situ salinity measurements. Continuous and extensive validation of satellite-observed salinity in the local seas around Korea should be further investigated for proper use.

Managing Soil Organic Matter and Salinity by Crop Cultivation in Saemangeum Reclaimed Tidal Land

  • Bae, Hui Su;Jang, Hyeonsoo;Hwang, Jae Bok;Park, Tae Seon;Lee, Kyo Suk;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • This study was to evaluate the effect of organic amendments incorporation on soil properties and plant growth under two different soil salinity levels and various cultivated crops at Saemangeum reclaimed tidal land for three years from 2012 to 2014. The soil texture of the experimental site was sandy loam. Four different crops, sesbania (Sesbania grandiflora), sorghum-sudangrass hybrid (Sorghum bicolor-Sorghum sudanense), rice (Oryza sativa L.) and barley (Hordeum vulgare) were cultivated at low (< $1dS\;m^{-1}$) and high (> $4dS\;m^{-1}$) soil salinity levels. The soil salinity was significantly lowered at the rice cultivation site compared to continuous upland crops cultivation site in high soil salinity level. But the soil salinity was increased as cultivating sesbania coutinuously in low soil salinity level. The soil organic matter content was increased with the incorporation of straw at the continuous site of rice and barley, and the average of soil organic matter was increased by $0.9g\;kg^{-1}$ per year which was effective in soil aggregate formation. The highest biomass yield plot was found in barley (high salinity level) and sesbania (low salinity level) cultivation site, respectively. Our research indicates that rice cultivation in paddy field with high salinity level was effective in lowering soil salinity and sesbania cultivation was useful to biomass production at upland with low salinity. In conclusion, soil salinity and organic matter content should be considered for multiple land use in newly reclaimed tidal land.

Soil salinity shifts the community structure and diversity of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars

  • Walitang, Denver I.;Ahmed, Shamim;Jeon, Sunyoung;Pyo, Chaeeun;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.244-244
    • /
    • 2017
  • Soil salinity due to accumulation of salts particularly sodium chloride affects agricultural lands and their vegetation. Generally, rice is a moderately sensitive plant with some cultivars with varying tolerance to salinity. Though there are physiological differences between salt-sensitive and salt-tolerant rice cultivars, both are still affected especially during high salinity and prolonged exposure. This also ultimately affects their indigenous bacterial endophytes particularly those that inhabit the rice seed endosphere. This study investigates the dynamic structure of seed bacterial endophytes of salt-sensitive and tolerant rice cultivars grown in different levels of soil salinity. Endophytic bacterial diversity was studied Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed a very interesting pattern of diversity and shifts in community structure of bacterial endophytes in the rice seeds. There is a general decrease in diversity for the salt-sensitive rice cultivar, IR29 as soil salinity increases. For the salt-tolerant cultivars, IC32 and IC37, diversity interestingly increased at moderate salinity then decreased at high soil salinity. The patterns of community structure is also strikingly different for the salt-sensitive and salt-tolerant rice cultivars. IR29 has a more even distribution of abundance, but under soil salinity, the community shifted where Curtobacterium, Pantoea, Flavobacterium and Microbacterium become the more dominant bacterial communities. For IC32 and IC37, the dominant bacterial groups under normal stress conditions were also the dominant bacterial groups during salt stress conditions. Their seed bacterial community is dominated by endophytes belonging to Microbacterium, Flavobacterium, Pantoea, Kosakonia and Enterobacter. Stenotrophomonas and Xanthomonas have not changed in terms of abundance under different salinity stress level in the salt-sensitive and salt-tolerant rice cultivars. This study showed that soil salinity greatly influenced the seed bacterial communities of rice seeds irrespective of their physiological tolerance to salinity.

  • PDF